1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
3 years ago
7

A construction worker took 1over8 

Mathematics
1 answer:
astraxan [27]3 years ago
8 0

Answer:

1/32

Step-by-step explanation:

1/8 divided by 4 = .03125

.03125= 1/32

You might be interested in
Help now!!!!!!!!!!!!!!!
uysha [10]

Answer:

Step-by-step explanation:

1) 165

2) 108

3)24

4) 75

5)2

6)7

3 0
3 years ago
2a + 3b = 5<br> b = a - 5
Lunna [17]
<h2>1st Equation:</h2>

Answer for A:

a =  \frac{5 - 3b}{2}

Answer for B:

b =  \frac{5 - 2b}{3}

<h2>2nd Equation:</h2>

Answer:

a = b + 5

<u>hope it helps</u><u>.</u>

5 0
2 years ago
Find all the solutions for the equation:
Contact [7]

2y^2\,\mathrm dx-(x+y)^2\,\mathrm dy=0

Divide both sides by x^2\,\mathrm dx to get

2\left(\dfrac yx\right)^2-\left(1+\dfrac yx\right)^2\dfrac{\mathrm dy}{\mathrm dx}=0

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2\left(\frac yx\right)^2}{\left(1+\frac yx\right)^2}

Substitute v(x)=\dfrac{y(x)}x, so that \dfrac{\mathrm dv(x)}{\mathrm dx}=\dfrac{x\frac{\mathrm dy(x)}{\mathrm dx}-y(x)}{x^2}. Then

x\dfrac{\mathrm dv}{\mathrm dx}+v=\dfrac{2v^2}{(1+v)^2}

x\dfrac{\mathrm dv}{\mathrm dx}=\dfrac{2v^2-v(1+v)^2}{(1+v)^2}

x\dfrac{\mathrm dv}{\mathrm dx}=-\dfrac{v(1+v^2)}{(1+v)^2}

The remaining ODE is separable. Separating the variables gives

\dfrac{(1+v)^2}{v(1+v^2)}\,\mathrm dv=-\dfrac{\mathrm dx}x

Integrate both sides. On the left, split up the integrand into partial fractions.

\dfrac{(1+v)^2}{v(1+v^2)}=\dfrac{v^2+2v+1}{v(v^2+1)}=\dfrac av+\dfrac{bv+c}{v^2+1}

\implies v^2+2v+1=a(v^2+1)+(bv+c)v

\implies v^2+2v+1=(a+b)v^2+cv+a

\implies a=1,b=0,c=2

Then

\displaystyle\int\frac{(1+v)^2}{v(1+v^2)}\,\mathrm dv=\int\left(\frac1v+\frac2{v^2+1}\right)\,\mathrm dv=\ln|v|+2\tan^{-1}v

On the right, we have

\displaystyle-\int\frac{\mathrm dx}x=-\ln|x|+C

Solving for v(x) explicitly is unlikely to succeed, so we leave the solution in implicit form,

\ln|v(x)|+2\tan^{-1}v(x)=-\ln|x|+C

and finally solve in terms of y(x) by replacing v(x)=\dfrac{y(x)}x:

\ln\left|\frac{y(x)}x\right|+2\tan^{-1}\dfrac{y(x)}x=-\ln|x|+C

\ln|y(x)|-\ln|x|+2\tan^{-1}\dfrac{y(x)}x=-\ln|x|+C

\boxed{\ln|y(x)|+2\tan^{-1}\dfrac{y(x)}x=C}

7 0
3 years ago
The length of a rectangle is 4 units less than the width. The area of the rectangle is 21 units. What is the length, in units, o
bazaltina [42]

The formula of an area of a rectangle:

A = wl

We have l = w - 4 and A = 21.

Substitute:

w(w - 4) = 21       <em>use distributive property</em>

(w)(w) + (w)(-4) = 21

w² - 4w = 21     <em>subtract 21 from both sides</em>

w² - 4w - 21 = 0

w² - 7w + 3w - 21 = 0

w(w - 7) + 3(w - 7) = 0

(w - 7)(w + 3) = 0 ↔ w - 7 = 0 ∨ w + 3 = 0

w = 7 ∨ w = -3 < 0

l = w - 4 → l = 7 - 4 = 3

<h3>Answer: the length = 3 u.</h3>
4 0
3 years ago
Find the common ratio of the sequence. 2, –10, 50, –250, –5  1/-5 –12 12
Sholpan [36]
-5
This is just to fill out the space of twenty characters

6 0
3 years ago
Read 2 more answers
Other questions:
  • 20. what is the area of the figure.
    15·1 answer
  • Determine whether a tangent is shown in the diagram, Yes or No?
    9·1 answer
  • QUICK HELP PLEASE SHOW WORK THANKS
    8·2 answers
  • Please help me with 3 more questions ill give good ratings please!
    9·1 answer
  • Find the difference: 1791.236 - 5.27
    8·1 answer
  • Where do fractions go on a number line
    7·1 answer
  • ½ x - 12 = 9<br> please help im not smart
    15·1 answer
  • Determine the distance between the two points (1, -3) and (-4, 3) plotted on the graph below.
    7·1 answer
  • Mnknkknnjkhbjhbkjdesjhajkd1qwbbbbbbbbhbxbhsjhbwqbhzhbwbqbwbhhwqbbhjsqbhswbhhbs
    11·1 answer
  • Can someone please help me?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!