For this case we have:
By properties of the radicals 
So:
.
Now, for power properties we have:

Thus, 
So:
in its radical form
Answer:
in its simplest form.
in its radical form
Given :
Miki has 104 nickels and 88 dimes.
She wants to divide her coins into groups where each group has the same number of nickels and the same number of dimes.
To Find :
Largest number of groups she can have .
Solution :
In the given question we need to find the largest number of groups she can have i.e we have to find the LCM of 104 and 88 .
Now , factorizing both of them , we get :

Form above , we can say that common factors are :

Therefore , the largest number of groups she can have is 8 .
Hence , this is the required solution .
Answer:9
Step-by-step explanation:
7+9+11+13=40
Answer: linear
Step-by-step explanation: