Answer:
Climate change has been described as one of the biggest problems faced by humankind. Carbon dioxide is is the primary driver of global warming. Prof Joanna Haigh from Imperial College London explains why this gas has played a crucial role in shaping the Earth's climate.
Carbon dioxide (CO2) has been present in the atmosphere since the Earth condensed from a ball of hot gases following its formation from the explosion of a huge star about five billion years ago.
At that time the atmosphere was mainly composed of nitrogen, CO2 and water vapour, which seeped through cracks in the solid surface. A very similar composition emerges from volcanic eruptions today.
As the planet cooled further some of the water vapour condensed out to form oceans and they dissolved a portion of the CO2 but it was still present in the atmosphere in large amounts.
The answer would be D. Empiricality. Scientific Method can not, and will not deal with studies that are either for logic or for theism. This field may be beyond the scientific confirmability, meaning, it can not be proven by science, one example of this is the existence of a primary mover, or a God.
The effect differs. It could produce a different amino acid in the sequence because the corresponding codon has changed. It could also prevent the production of the originally intended sequence by changing one of the amino acids of a "start" codon (aka AUG) or extend the protein's sequence by modifying a "stop" codon (UAA, UAG, UGA or UGG), producing a new protein that might be useless or have different effects on the cell.
Now it is clear that genes are what carry our traits through generations and that genes are made of deoxyribonucleic acid (DNA). But genes themselves don't do the actual work. Rather, they serve as instruction books for making functional molecules such as ribonucleic acid (RNA) and proteins, which perform the chemical reactions in our bodies.Proteins do many other things, too. They provide the body's main building materials, forming the cell's architecture and structural components. But one thing proteins can't do is make copies of themselves. When a cell needs more proteins, it uses the manufacturing instructions coded in DNA.The DNA code of a gene—the sequence of its individual DNA building blocks, labeled A (adenine), T (thymine), C (cytosine) and G (guanine) and collectively called nucleotides— spells out the exact order of a protein's building blocks, amino acids.
Occasionally, there is a kind of typographical error in a gene's DNA sequence. This mistake— which can be a change, gap or duplication—is called a mutation.