The absolute value of a real number is a positive value of the number. Which means that the absolute value is the distance from zero of the number line. However, that of the complex numbers is the distance from the origin to the point in a complex plane.
We know that the area of a circle in terms of π will be πr². However the area with respect to the diameter will be a different story. The first step here is to find a function relating the area and diameter of any circle --- ( 1 )
For any circle the diameter is 2 times the radius,
d = 2r
Therefore r = d / 2, which gives us the following formula through substitution.
A = π(d / 2)² = πd² / 4
<u>Hence the area of a circle as the function of it's diameter is A = πd² / 4. You can also say f(d) = πd² / 4.</u>
Now we can substitute " d " as 4, solving for the area ( A ) or f(4) --- ( 2 )
f(4) = π(4)² / 4 = 16π / 4 = 4π - <u>This makes the area of circle present with a diameter of 4 inches, 4π.</u>
Answer:
a. With 90% confidence the proportion of all Americans who favor the new Green initiative is between 0.6290 and 0.6948.
b. If the sample size is changed, the confidence interval changes as the standard error depends on sample size.
About 90% percent of these confidence intervals will contain the true population proportion of Americans who favor the Green initiative and about 10% percent will not contain the true population proportion.
Step-by-step explanation:
We have to calculate a 90% confidence interval for the proportion.
The sample proportion is p=0.6619.

The standard error of the proportion is:

The critical z-value for a 90% confidence interval is z=1.6449.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:
The 90% confidence interval for the population proportion is (0.6290, 0.6948).
The answer is 1)B 2)C 3)F
Answer:
660 mm
Step-by-step explanation:
we know that
The scale factor is 
That means
1 unit in the model represent 15 units in the actual
or
1 m in the model represent 15 m in the actual
To find out the height of the model rocket, divide the height of the actual rocket by 15
so

Convert m to mm
Remember that

To convert meters to millimeters, multiply by 1,000
so