Answer:
Step-by-step explanation:
a₁ = -1
a₂ = 3a₁ + 7 = 3(-1)+7 = 4
a₃ = 3a₂ + 7 = 3·4+7 = 19
Answer:
I think its number 4
Step-by-step explanation:
but im not sure
9 is the base of the triangle 4 is the leg and 5 is the
The roots of the entire <em>polynomic</em> expression, that is, the product of p(x) = x^2 + 8x + 12 and q(x) = x^3 + 5x^2 - 6x, are <em>x₁ =</em> 0, <em>x₂ =</em> -2, <em>x₃ =</em> -3 and <em>x₄ =</em> -6.
<h3>How to solve a product of two polynomials </h3>
A value of <em>x</em> is said to be a root of the polynomial if and only if <em>r(x) =</em> 0. Let be <em>r(x) = p(x) · q(x)</em>, then we need to find the roots both for <em>p(x)</em> and <em>q(x)</em> by factoring each polynomial, the factoring is based on algebraic properties:
<em>r(x) =</em> (x + 6) · (x + 2) · x · (x² + 5 · x - 6)
<em>r(x) =</em> (x + 6) · (x + 2) · x · (x + 3) · (x + 2)
r(x) = x · (x + 2)² · (x + 3) · (x + 6)
By direct inspection, we conclude that the roots of the entire <em>polynomic</em> expression are <em>x₁ =</em> 0, <em>x₂ =</em> -2, <em>x₃ =</em> -3 and <em>x₄ =</em> -6.
To learn more on polynomials, we kindly invite to check this verified question: brainly.com/question/11536910