Answer:
Step-by-step explanation:
The given function is

The graph of this function is a parabola that opens downwards
The line
intersects this parabola, when

The teammate can spike the ball after 0.25 seconds or 0.5 seconds.
The two solutions are reasonable. When the volleyball is accelerating into the air, it passes a height of 8 after 0.25 seconds.
When the ball is dropping after it attains maximum height, it attains another height of 8 after 0.5 seconds again.
Answer:
d. 15
Step-by-step explanation:
Putting the values in the shift 2 function
X1 + X2 ≥ 15
where x1= 13, and x2=2
13+12≥ 15
15≥ 15
At least 15 workers must be assigned to the shift 2.
The LP model questions require that the constraints are satisfied.
The constraint for the shift 2 is that the number of workers must be equal or greater than 15
This can be solved using other constraint functions e.g
Putting X4= 0 in
X1 + X4 ≥ 12
gives
X1 ≥ 12
Now Putting the value X1 ≥ 12 in shift 2 constraint
X1 + X2 ≥ 15
12+ 2≥ 15
14 ≥ 15
this does not satisfy the condition so this is wrong.
Now from
X2 + X3 ≥ 16
Putting X3= 14
X2 + 14 ≥ 16
gives
X2 ≥ 2
Putting these in the shift 2
X1 + X2 ≥ 15
13+2 ≥ 15
15 ≥ 15
Which gives the same result as above.
Eva because 3:2 = 9:6 because when they multiply by 3 on each ratio
Answer:
a. 1/13
b. 1/52
c. 2/13
d. 1/2
e. 15/26
f. 17/52
g. 1/2
Step-by-step explanation:
a. In a deck of cards, there are 4 suits and each of them has a 7. Therefore, the probability of drawing a 7 is:
P(7) = 4/52 = 1/13
b. There is only one 6 of clubs, therefore, the probability of drawing a 6 of clubs is:
P(6 of clubs) = 1/52
c. There 4 fives (one for each suit) and 4 queens in a deck of cards. Therefore, the probability of drawing a five or a queen is:
P(5 or Q) = P(5) + P(Q)
= 4/52 + 4/52
= 1/13 + 1/13
P(5 or Q) = 2/13
d. There are 2 suits that are black. Each suit has 13 cards. Therefore, there are 26 black cards. The probability of drawing a black card is:
P(B) = 26/52 = 1/2
e. There are 2 suits that are red. Each suit has 13 cards. Therefore, there are 26 red cards. There are 4 jacks. Therefore:
P(R or J) = P(R) + P(J)
= 26/52 + 4/52
= 30/52
P(R or J) = 15/26
f. There are 13 cards in clubs suit and there are 4 aces, therefore:
P(C or A) = P(C) + P(A)
= 13/52 + 4/52
P(C or A) = 17/52
g. There are 13 cards in the diamonds suit and there are 13 in the spades suit, therefore:
P(D or S) = P(D) + P(S)
= 13/52 + 13/52
= 26/52
P(D or S) = 1/2
Answer:
x = 9/4
Step-by-step explanation:
Locate point G on segment DE so that DG = 1 and GE = 4. CG is parallel to AD, so ΔCGE ~ ΔABC. Corresponding sides are proportional.
AB/BC = CG/GE
x/1 = 9/4
x = 9/4
_____
<em>Additional comment</em>
Using the given triangles, you can write the proportion statement as ...
(9+x)/x = 5/1
We judge this to take more steps to solve, so we prefer the method shown above.