Answer:
the probability that a sample of 4 bags will have a mean weight less than 9.8 pounds is 0.05
Step-by-step explanation:
Given the data in the question;
μ_x = 10 pound bags
standard deviation s_x = 0.24 pounds
sample size n = 4
The bag weights are normally distributed so;
p( x' less than 9.8 ) will be;
p( (x'-μ_x' / s_x') < (9.8-μ_x' / s_x') )
we know that;
μ_x' = μ_x = 10
and s_x' = s_x/√n = 0.24/√4
so; we substitute
p( z < ( (9.8 - 10) / (0.24/√4) )
p( z < -0.2 / 0.12 )
p( z < -1.67 )
{ From z-table }
⇒ p( z < -1.67 ) = 0.0475 ≈ 0.05
Therefore, the probability that a sample of 4 bags will have a mean weight less than 9.8 pounds is 0.05
We are given two relations
(a)
Relation (R)
![R=[((k-8.3+2.4k),-5),(-\frac{3}{4}k,4)]](https://tex.z-dn.net/?f=R%3D%5B%28%28k-8.3%2B2.4k%29%2C-5%29%2C%28-%5Cfrac%7B3%7D%7B4%7Dk%2C4%29%5D)
We know that
any relation can not be function when their inputs are same
so, we can set both x-values equal
and then we can solve for k







............Answer
(b)
S = {(2−|k+1| , 4), (−6, 7)}
We know that
any relation can not be function when their inputs are same
so, we can set both x-values equal
and then we can solve for k




Since, this is absolute function
so, we can break it into two parts


we get




so,
...............Answer
-14>2x>18
Hope this helps!
Answer:
d, c, a, b
d= 32, 56
c = 34, 64
a = 85, 92
b = 23, 55
Step-by-step explanation: