1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Travka [436]
3 years ago
6

Graphing a Function look in PDF below to answer questions. Will report you and everything you have if you put a fake answer, I d

on't like doing that but, I don't want people to scam me. I need my answers checked and if I got any wrong please explain it to me. Will give brainliest to whoever gets all of the questions right and explains properly.
Please do not answer if you have no intent on helping me. Thanks for all the help!
These are the answers I got
1. B
2.A
3.B
4.C
5.D
Mathematics
1 answer:
docker41 [41]3 years ago
5 0
Y = -4x + 3 y = -4(1) + 3 ... plug in x = 1 (ie replace x with 1) y = ??? so if x = 1, then y is y = -1 <span>therefore, one row should be 1 -1</span>
You might be interested in
Select the correct answer. Every dimension of a triangular pyramid is multiplied by 10 to produce a new figure that is geometric
BaLLatris [955]

Answer:

  • C. The surface area of the pyramid is multiplied by 100

Step-by-step explanation:

The area is the function of the two dimensions.

If each dimension has changed by 10 times, the the area will change by:

  • 10*10 = 100 times

Correct choice is C

3 0
3 years ago
Read 2 more answers
Angelina ran 2 miles in 15 minutes. At that rate, how far will she run in 1 hour?
Lostsunrise [7]
1 hour = 60 minutes
60 minutes / 15 minutes = 4
2x4= 8 miles
3 0
3 years ago
What is the solution to the following equation? 5(2x − 14) + 23 = 7x − 14
g100num [7]
X=11

 Hope this helps your welcome
7 0
3 years ago
Read 2 more answers
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
The longest side of a triangle is 10 cm. Which group of line segments could form the other 2 sides of the triangle? Select three
Ede4ka [16]

Answer:

5 and 5 cm, 4 and 4cm, and 6 and 6 cm

7 0
3 years ago
Read 2 more answers
Other questions:
  • Help please bottom 2 questions
    12·1 answer
  • The ratio of angles in a triangle is 2:3:5 Is the triangle right angled?
    9·1 answer
  • The equation of a line is given below.<br> - 4x - 5y = -5
    13·1 answer
  • 1
    10·1 answer
  • Three of the sides will require fencing and the fourth wall already exists. If the farmer has 116 feet of fencing, what are the
    5·1 answer
  • In this assignment, you will explore how to find the number of different species of fish in a pond by looking at a random sample
    14·2 answers
  • SIMPLE CORDINATES. BRAINLIEST, 5 STAR, AND A LIKE IN RETURN. SHOW SOME WORK PLEASE THIS IS DUE SOON.
    13·1 answer
  • In December, the average number of daily shoppers at North Point Mall in 2007 was 1600. This number shrank to 1000 daily shopper
    11·1 answer
  • Adding fractions with unlike Denominators and Subtracting fractions (PLEASE HELP ME ASAP AND PLEASE ANSWER ALL)
    9·2 answers
  • What is the common ratio between successive terms in the sequence?<br> 27, 9, 9, 1,<br> 3,<br> of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!