Answer:
Contain a repair mechanism inherent in their biochemistry (repair enzymes)
Explanation:
When cells are exposed to sublethal doses of ionizing radiation, repair and recovery may occur because cells: Contain a repair mechanism inherent in their biochemistry (repair enzymes).
Answer:
Therefore, a global zoonotic disease surveillance system to reduce the emergence of zoonotic diseases in humans and to help detect other livestock diseases early could help to prevent the staggering economic losses associated with zoonotic disease outbreaks. So, yes I would say that they are very important to study.
Explanation:
Answer:
There are two possible answers: Deep-sea vents provided the energy needed for the first organic compounds to form OR self-replicating RNA molecules passed on genetic information.
Explanation:
The reason for the first answer is due to the hypothesis that indicates that life (organic molecules) arose from inorganic molecules synthesized from the amino acids in those energy vents. This is called the metabolism first hypothesis. The Miller-Urey Experiment provided evidence that organisms could rise from inorganic molecules (they simulated under the conditions you would see on early Earth). The second hypothesis is the RNA World hypothesis (second answer) which suggests that the formation of RNA that could replicate (possible due to mutation or evolution), led to life that could preserve its genetic integrity through replication (greater stability to the organism) and create lipid bi-layer membranes/other organelles. Some scientists support the Metabolism First Hypothesis, while others are skeptical (this goes for the RNA World Hypothesis as well). However, the RNA World Hypothesis is for more reasonable in the fact that its main point is the fact that RNA molecules were able to replicate and maintain genetic stability despite early Earth conditions. Although either hypothesis could explain why all organisms share the same genetic code, the RNA World Hypothesis better explains the universality of DNA/RNA of genes that we see today.
The answer is the last one. Countercurrent multiplication in the kidneys is the way toward utilizing vitality to create an osmotic slope that empowers you to reabsorb water from the tubular liquid and deliver concentrated pee. It is discovered broadly in nature and particularly in mammalian organs.
Countercurrent multiplication was initially considered as a system whereby pee is gathered in the nephron. At first, concentrated in the 1950s by Gottschalk and Mylle following Werner Kuhn's hypotheses, this instrument picked up notoriety simply after a progression of confounded micropuncture tests.