Step-by-step explanation:
Enter a problem...
Algebra Examples
Popular Problems
Algebra
Expand using the Binomial Theorem (3x+2)^4
(3x+2)4(3x+2)4
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an−kbk)(a+b)n=∑k=0nnCk⋅(an-kbk).
4∑k=04!(4−k)!k!⋅(3x)4−k⋅(2)k∑k=044!(4-k)!k!⋅(3x)4-k⋅(2)k
Expand the summation.
4!(4−0)!0!⋅(3x)4−0⋅(2)0+4!(4−1)!1!⋅(3x)4−1⋅(2)+4!(4−2)!2!⋅(3x)4−2⋅(2)2+4!(4−3)!3!⋅(3x)4−3⋅(2)3+4!(4−4)!4!⋅(3x)4−4⋅(2)44!(4-0)!0!⋅(3x)4-0⋅(2)0+4!(4-1)!1!⋅(3x)4-1⋅(2)+4!(4-2)!2!⋅(3x)4-2⋅(2)2+4!(4-3)!3!⋅(3x)4-3⋅(2)3+4!(4-4)!4!⋅(3x)4-4⋅(2)4
Simplify the exponents for each term of the expansion.
1⋅(3x)4⋅(2)0+4
Hope this helps!
<span><span>т = <span><span>9/10
Я сподіваюсь допомогла ^ - ^
</span></span></span><span>
</span></span>
Answer with Step-by-step explanation:
We are given that
A and B are matrix.
A.We know that for two square matrix A and B
Then, 
Therefore, it is true.
B. det A is the product of diagonal entries in A.
It is not true for all matrix.It is true for upper triangular matrix.
Hence, it is false.
C.

When is a factor of the characteristics polynomial of A then -5 is an eigenvalue of A not 5.
Hence, it is false.
D.An elementary row operation on A does not change the determinant.
It is true because when an elementary operation applied then the value of matrix A does not change.
Answer:
0.
Step-by-step explanation: