1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nalin [4]
3 years ago
15

The graph of a linear function passes through the points (2, 4) and (8, 10).

Mathematics
1 answer:
Keith_Richards [23]3 years ago
8 0
\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
%   (a,b)
&({{ 2}}\quad ,&{{ 4}})\quad 
%   (c,d)
&({{ 8}}\quad ,&{{ 10}})
\end{array}
\\\\\\
% slope  = m
slope = {{ m}}= \cfrac{rise}{run} \implies 
\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{10-4}{8-2}

\bf \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\qquad 
\begin{array}{llll}
\textit{plug in the values for }
\begin{cases}
y_1=4\\
x_1=2\\
m=\boxed{?}
\end{cases}\\
\textit{and solve for "y"}
\end{array}
You might be interested in
Create a system of equations
Vika [28.1K]

Answer:

Answer: Janet is 16, and David is 11.

Step-by-step explanation:

Let the ages be j and d.

j = d + 5

j + d = 27

Substitute d + 5 for j in the second equation.

d + 5 + d = 27

2d + 5 = 27

2d = 22

d = 11

Substitute 11 for d in the first equation.

j = d + 5

j = 11 + 5

j = 16

Answer: Janet is 16, and David is 11.

6 0
2 years ago
<img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B%20-%2064%20%7D%20" id="TexFormula1" title=" \sqrt{ - 64 } " alt=" \sqrt{ - 64 }
Kipish [7]
What’s the other number?
3 0
3 years ago
What is Limit of StartFraction StartRoot x + 1 EndRoot minus 2 Over x minus 3 EndFraction as x approaches 3?
scoray [572]

Answer:

<u />\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \boxed{ \frac{1}{4} }

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]
Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify given limit</em>.

\displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3}

<u>Step 2: Find Limit</u>

Let's start out by <em>directly</em> evaluating the limit:

  1. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} = \frac{\sqrt{3 + 1} - 2}{3 - 3}
  2. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \frac{\sqrt{3 + 1} - 2}{3 - 3} \\& = \frac{0}{0} \leftarrow \\\end{aligned}

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:

  1. [Limit] Apply Limit Rule [L' Hopital's Rule]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\\end{aligned}
  2. [Limit] Differentiate [Derivative Rules and Properties]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \leftarrow \\\end{aligned}
  3. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \leftarrow \\\end{aligned}
  4. Evaluate:
    \displaystyle \begin{aligned}\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} & = \lim_{x \to 3} \frac{(\sqrt{x + 1} - 2)'}{(x - 3)'} \\& = \lim_{x \to 3} \frac{1}{2\sqrt{x + 1}} \\& = \frac{1}{2\sqrt{3 + 1}} \\& = \boxed{ \frac{1}{4} } \\\end{aligned}

∴ we have <em>evaluated</em> the given limit.

___

Learn more about limits: brainly.com/question/27807253

Learn more about Calculus: brainly.com/question/27805589

___

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

3 0
2 years ago
Guys I, need help with this please help it is due today
Ilya [14]
4. .5 per ounce so 3.5 for 7 ounces
5. 7.5 degree every hour so 22.5 for 3 hours
6. 61 miles per hour so 305 for 5 hours
6 0
2 years ago
Find the median and the mode of the data.
frosja888 [35]

Answer:

Median: 8

Mode: 7

I believe this is correct.

7 0
2 years ago
Read 2 more answers
Other questions:
  • How do functions and slopes work i dont understand anything work?
    9·1 answer
  • Find the measure of the complement of a 7979degrees° angle.
    15·2 answers
  • Please help me with these pages<br> 38 points!
    9·1 answer
  • One gallon of gasoline in Buffalo, New York costs $2.29. In Toronto, Canada, one liter of gasoline costs $0.91. How much does on
    5·1 answer
  • In the expression 11 + 3n, the coefficient is 11.
    10·1 answer
  • If pqr= 1 show that 1/(1+p+q^-1)+1/(1+q+r^-1)+1/(1+r+p^-1) = 1.<br>​
    5·2 answers
  • The population of a certain species of fish in a lake after t years is given by P(t)=18801 + 1.42e-0.037t. Find the horizontal a
    11·1 answer
  • Help please I don’t get it
    7·1 answer
  • 2. Find the simple interest on a $2,350 principal deposited for 15 months at a rate of 3.77%
    10·1 answer
  • Please help for brainliest ​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!