Answer:
By using Carl Gauss's clever formula, (n / 2)(first number + last number) = sum, where n is the number of integers, we learned how to add consecutive numbers quickly. We now know that the sum of the pairs in consecutive numbers starting with the first and last numbers is equal.
Answer:
Step-by-step explanation:
?
Penjelasan langkah demi langkah:
1)
![= 243^{\frac{2}{3} }\\= (\sqrt[3]{243})^2\\= 7^2\\= 49](https://tex.z-dn.net/?f=%3D%20243%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D%5C%5C%3D%20%28%5Csqrt%5B3%5D%7B243%7D%29%5E2%5C%5C%3D%207%5E2%5C%5C%3D%2049)
2) √32 +3√18-2√50
= √16*2 +3√9*2-2√25*2
= 4√2 + 3(3√2)-2(5√2)
= 4√2 + 9√2-10√2
= 13√2-10√2
= 3√2
3) 1000 ⅔×64⅙
![= (\sqrt[3]{1000}) ^2 \times (2^6)^{1/6} \\= 10^2 \times 2\\= 100 \times 2\\= 200](https://tex.z-dn.net/?f=%3D%20%28%5Csqrt%5B3%5D%7B1000%7D%29%20%5E2%20%5Ctimes%20%282%5E6%29%5E%7B1%2F6%7D%20%20%5C%5C%3D%2010%5E2%20%5Ctimes%202%5C%5C%3D%20100%20%5Ctimes%202%5C%5C%3D%20200)
4) 3/4+√2

5) 2√3×√18
= 2√3×√9*2
= 2√3×3√2
= (2*3)(√3*√2)
= 6√6
6) 12/3+√3
= 4+√3
7) √1000—2√40
= 10 -2 (√4*10)
= 10-2(2√10)
= 10 - 4√10
8) 2- ¹+3-¹

9)

Jika pernyataannya opsional, penyebutnya adalah 1
10) 2√3×√18
= 2√3×√9*2
= 2√3×3√2
= (2*3)(√3*√2)
= 6√6
Half of 5.00 is 2.50, I suppose the 50 is the X in the situation, I don't have a graph to work on sorry I tried to help as much as I can.
Answer:
Y = -3x - 1
Step-by-step explanation:
Y= mx + b
M is the slope
Y is the y intercept