Step One - Obtain a clean microscope slide.
Step Two - Place a drop of liquid on the slide. This is the “wet” part of the wet mount. The liquid used depends on the type of cell being viewed:
If examining a plant cell, tap water can be used.
If examining an animal cell, physiological saline (or contact lens solution) must be used, because if plain water is used, the cell will explode from osmotic pressure. Unlike plant cells and bacteria, animal cells have no cell wall to structurally support them.
Step Three - Obtain the specimen to be used. Some introductory biology classics for viewing include:
Skin of an onion bulb: In order to view the cells, a very thin layer of skin must be obtained. Take a single layer of onion and bend it towards the shiny side. After it snaps, pull gently, and a transparent layer of skin, similar to Scotch tape, will appear.
Elodea leaf: Elodea leaves are two cell layers thick. The cells in one layer are smaller than the cells in the other, so elodea leaves can be used to better understand a microscope's depth of field.
Cheek cells: Human epithelial cells can be obtained by gently rubbing a toothpick on the inside of the mouth, and then swirling the toothpick in the physiological saline on the slide.
Pond water: Obtaining some water from a pond makes wet mount preparation a breeze, since the water and the specimens are both included.
Hope this helps
Answer:
Do different colors attract different pollinators.
Explanation:
The answer is most likely B, "Alcohol consumption tends to cause more [Aggressive] behavior."
In complementary base pairing, the G pairs with C, and A pairs with T. Given that this be the rule, the complementary nucleotides for your sequence would be as follows: CGATTAACGTAGGCA.
With regards to proofreading, mutations in cell division occur once in around every 100,000 base pairs. If this happens, the enzyme that pairs the nucleotides to form DNA, called DNA polymerase, detects the error and moves back along the strand, it then cuts the incorrect nucleotide and replaces it with the correct one, fixing the error and continuing with the DNA synthesis.
This process corrects the majority of errors in DNA synthesis, but some errors can still be missed by the DNA polymerase, this is then rectified by a protein complex which binds to the incorrect pairing until anther complex, comes along and cuts that particular section of DNA out, which is then replaced by a new section of correct nucleotides synthesized by the polymerase enzyme, the two sections at either end that were cut is then sealed by ligase, an enzyme which essentially "glues" the DNA stands back together.
My apologies for the long answer, I hope I answered your question and that you understand it well enough.