The angle is 75.52 degrees
If there is a vector with the form a i + b j, the cosine of the angle between the given vector and the positive direction of the x - axis is calculated as:
cos θ = 
So, given the vector i+
, the cosine of the angle between the vector and the x-axis is:
cos θ = 0.25
Therefore, the angle θ between the given vector and the positive direction of the x-axis is:
θ = cos-1(0.25) = 75.52
For more information about angles, visit
brainly.com/question/25661248
#SPJ4
Answer:
D
Step-by-step explanation:
well, the assumption is that is a rectangle, namely it has two equal pairs, so we can just find the length of one of the pairs to get the dimensions.
hmmmm let's say let's get the length of the segment at (-1,-3), (1,3) for its length
and
the length of the segment at (-1, -3), (-4, -2) for its width
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{length}{L}=\sqrt{[1-(-1)]^2+[3-(-3)]^2}\implies L=\sqrt{(1+1)^2+(3+3)^2} \\\\\\ L=\sqrt{4+36}\implies L=\sqrt{40} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Blength%7D%7BL%7D%3D%5Csqrt%7B%5B1-%28-1%29%5D%5E2%2B%5B3-%28-3%29%5D%5E2%7D%5Cimplies%20L%3D%5Csqrt%7B%281%2B1%29%5E2%2B%283%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20L%3D%5Csqrt%7B4%2B36%7D%5Cimplies%20L%3D%5Csqrt%7B40%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{width}{w}=\sqrt{[-4-(-1)]^2+[-2-(-3)]^2}\implies w=\sqrt{(-4+1)^2+(-2+3)^2} \\\\\\ w=\sqrt{9+1}\implies w=\sqrt{10} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{A=Lw}\implies \sqrt{40}\cdot \sqrt{10}\implies \sqrt{400}\implies \boxed{20}](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-4%7D~%2C~%5Cstackrel%7By_2%7D%7B-2%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bwidth%7D%7Bw%7D%3D%5Csqrt%7B%5B-4-%28-1%29%5D%5E2%2B%5B-2-%28-3%29%5D%5E2%7D%5Cimplies%20w%3D%5Csqrt%7B%28-4%2B1%29%5E2%2B%28-2%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20w%3D%5Csqrt%7B9%2B1%7D%5Cimplies%20w%3D%5Csqrt%7B10%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7BA%3DLw%7D%5Cimplies%20%5Csqrt%7B40%7D%5Ccdot%20%5Csqrt%7B10%7D%5Cimplies%20%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7B20%7D)
Can u show what ur saying on a graph so i can solve it for u
Answer:
14
Step-by-step explanation:
25 + 14 = 14 + 25
39 = 39