Answer: The answer is (d) ⇒ cscx = √3
Step-by-step explanation:
∵ sinx + (cotx)(cosx) = √3
∵ sinx + (cosx/sinx)(cosx) = √3
∴ sinx + cos²x/sinx = √3
∵ cos²x = 1 - sin²x
∴ sinx + (1 - sin²x)/sinx = √3 ⇒ make L.C.M
∴ (sin²x + 1 - sin²x)/sinx = √3
∴ 1/sinx = √3
∵ 1/sinx = cscx
∴ cscx = √3
Answer is A, different slopes
enjoy
Answer:
Simplified: -4a²b²+18a³-2b³
3a(6a²-4ab²)+8a²b²-2b³
Multiply 3a by 6a² and-4ab²
18a³-12a²b²+8a²b²-2b³
combine like terms (-12a²b² and 8a²b²)
-4a²b²+18a³-2b³
Hope this helps