1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-14-01-66 [18.8K]
3 years ago
14

Tom's Game Shop ordered 18 computer games. Two-thirds of the games were baseball games. How many of the game were not baseball g

ames?
Mathematics
2 answers:
Kaylis [27]3 years ago
6 0

Answer:

Your answer would be 12

juin [17]3 years ago
5 0

2/3=?/18

18÷3=6

3×6=18

2×6=12

?=12

You might be interested in
Simplify: 7.2(2.8r – 4.5s) + 9.34r – 1.25s
Free_Kalibri [48]

Answer:

29.5r - 33.65s

Step-by-step explanation:

3 0
3 years ago
In the diagram below of circle O, OB and OC are radii, and chords AB, BC,
Vikki [24]

Answer:

It would be number 2. measure of angle BAC is equal to half the measure of angle BOC.

Step-by-step explanation:

This is because of inscribed angles.

4 0
3 years ago
Solve the equation. Show all steps in the solution<br>2\3x + 1 = 5<br>​
Troyanec [42]

Answer: x=6

<u>Subtract 1 from both sides</u>

<u></u>2/3x+1-1=5-1<u></u>

<u></u>2/3x=4<u></u>

<u></u>

<u>Multiply both sides by 3/2</u>

<u></u>(3/2)*(2/3x)=(3/2)*4\\x=6<u></u>

3 0
3 years ago
Read 2 more answers
Consider a small population consisting of the 100 students enrolled in an introductory statistics course. Students in the class
Ray Of Light [21]

Answer:

5 ; 0.728 ; 0.00002

Step-by-step explanation:

According to the Central limit theorem, for a normal distribution, the population mean equals the sample mean., Hence the population mean, μ = sample mean = 5

The standard deviation of sampling distribution :

Standard deviation / sqrt(n)

σ / sqrt(n)

σ = 3 ; n = 17

3 / sqrt(17)

3 / 4.1231056

= 0.7276

= 0.728

3.)

P(x < 2) :

Using :

Z = (x - mean) ÷ s/sqrt(n)

P(x < 2) = (2 - 5) ÷ 3/sqrt(17)

P(x < 2) = -3 / 0.7276068

P(x < 2) = - 4.1231060

Z < - 4.123 = 0.00002 (Z probability calculator).

7 0
3 years ago
15.30 find the inverse laplace transform of: 1. (a) f1(s) = 6s 2 8s 3 s(s 2 2s 5) 2. (b) f2(s) = s 2 5s 6 (s 1) 2 (s 4) 3. (c) f
EleoNora [17]

The solution of the inverse Laplace transforms is mathematically given as

  • f_{1}(t)=e^{-t}\sin (2 t)
  • f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}
  • f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

<h3>What is  the inverse Laplace transform?</h3>

1)

Generally, the equation for the function is  mathematically given as

$F_{1}(s)=\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}$

By Applying the Partial fractions method

\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5}

$6 s^{2}+8 s+3=A\left(s^{2}+2 s+5\right)+(B s+C) s$

\begin{aligned}&3=5 A \\&A=\frac{3}{5}\end{aligned}

Considers s^2 coefficient

\begin{aligned}&6=A+B \\&B=6 \cdot A \\&B=\frac{27}{5}\end{aligned}

Consider s coeffici ent

\begin{aligned}&8=2 A+C \\&C=8-2 A \\&C=\frac{34}{5}\end{aligned}

Putting these values into the previous equation

&F_{1}(s)=\frac{3}{5 s}+\frac{27 s+34}{5\left(s^{2}+2 s+5\right)} \\\\&F_{1}(s)=\frac{3}{5 s}+\frac{27(s+1)}{5\left((s+1)^{2}+4\right)}+\frac{7 \times 2}{10\left((s+1)^{2}+4\right)}

By taking Inverse Laplace Transforms

f_{1}(t)=\frac{3}{5}+\frac{27}{5} e^{-t} \cos (2t) + \frac{7}{10}\\\\

f_{1}(t)=e^{-t}\sin (2 t)

For B

$F_{2}(s)=\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}$

By Applying Partial fractions method

\begin{aligned}&\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\\\&s^{2}+5 s+6=A(s+1)(s+4)+B(s+4)+C(s+1)^{2}\end{aligned}

at s=-1

1-5+6=3 B \\\\B=\frac{2}{3}

at s=-4

&16-20+6=9 C \\\\&9 C=2 \\\\&C=\frac{2}{9}

at s^2 coefficient

1=A+C

A=1-C

A=7/9

inputting Variables into the Previous Equation

\begin{aligned}&F_{2}(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\&F_{2}(s)=\frac{7}{9(s+1)}+\frac{2}{3(s+1)^{2}}+\frac{2}{9(s+4)}\end{aligned}

By taking Inverse Laplace Transforms

f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}

For C

$F_{3}(s)=\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}$

Using the strategy of Partial Fractions

\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4 s+8}

10=A\left(s^{2}+4 s+8\right)+(B s+C)(s+1)

S=-1

10=(1-4+8) A

A=10/5

A=2

Consider constants

10=8 A+C

C=10-8 A

C=10-16

C=-6

Considers s^2 coefficient

0=A+B

B=-A

B=-2

inputting Variables into the Previous Equation

&F_{3}(s)=\frac{2}{s+1}+\frac{-2 s-6}{\left((s+2)^{2}+4\right)} \\\\&F_{3}(s)=\frac{2}{s+1}-\frac{2(s+2)}{\left((s+2)^{2}+4\right)}-\frac{2}{\left((s+2)^{2}+4\right)}

Inverse Laplace Transforms

f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

Read more about Laplace Transforms

brainly.com/question/14487937

#SPJ4

3 0
2 years ago
Other questions:
  • A sample of 100 receipts from a restaurant showed that 12 had errors. What is the 95% confidence interval for the proportion of
    6·1 answer
  • What are the dimensions of the following matrix [5 3]?
    8·1 answer
  • What is the length of the hypotenuse of the right triangle shown below?
    13·1 answer
  • The percentage results of a quiz are as follows: 62, 83, 90, 72, 88, 92, 75, 88, 96, 86, 81, 68, 87. About what percent of the c
    15·2 answers
  • Jordan has a length of string that is 11 inches. If he cuts off a 2 inch piece, how long will the remaining string be?
    8·1 answer
  • What is the graph of the function f(x) = the quantity of x squared plus 3 x plus 5, all over x plus 2
    12·1 answer
  • What is -1.06666667 as a fraction
    7·1 answer
  • Question 19 (1 point)
    5·1 answer
  • CAN SOMEONE PLEASE HELP ME WITH THIS!
    12·2 answers
  • Solve the following quadratic by
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!