Answer:
8.800s
Explanation:
When the performer swings, she oscillates in SHM about Lo of the string with time period To = 8.90s.
First, determine the original length Lo, where for a SHM the time period is related to length and the gravitational acceleration by the equation
T = 2π×√(Lo/g)..... (1)
Let's make Lo the subject of the formulae
Lo = gTo^2/4π^2 ..... (2)
Let's put our values into equation (2) to get Lo
Lo = gTo^2/4π^2
= (9.8m/s^2)(8.90s)^2
------------------------------
4π^2
= 19.663m
Second instant, when she rise by 44.0cm, so the length Lo will be reduced by 44.0cm and the final length will be
L = Lo - (0.44m)
= 19.663m - 0.44m
= 19.223m
Now let use the value of L into equation (1) to get the period T after raising
T = 2π×√(L/g)
= 2π×√(19.223m/9.8m/s^2)
= 8.800s
I'd mark answer B :) technically it means that you must eat enough food rich in those aminoacids because they can't be synthesized by the organism.
Serious systemic fungal infections and parasitic infections usually only develop in individuals who are immunocompromised. These individuals have a weak immune system. The body cannot respond quickly to infections since their immunity is not very well developed.
Answer:
Natural selection disrupts the genetic equilibrium by favoring the genes for the traits that impart survival advantage to individuals.
Explanation:
Natural selection refers to the unequal survival rate of individuals of a population due to the presence of some beneficial adaptive genetic trait. These individuals are able to survive more and leave more progeny. Over generations, the population has increased number of these individuals leading to evolution of a population with different allele frequencies.
For example, the frequency of gene for antibiotic resistance in the bacterial population was increased once humans started using antibiotics to control the bacterial population. This led to the evolution of the bacterial population with antibiotic resistance.
Edit
Viruses reproduce within the living cells of the host and use the cellular machinery to synthesize their own genome and other components. To gain entry into cells, they have developed a variety of mechanisms to introduce their genes and proteins into host cells.