Answer:
a) 32
b) 67.613
Step-by-step explanation:
<em><u> In Game 3, Emerson struck out 42 times in 140 times at-bat.</u></em>
<em><u>Part A</u></em>
<em><u>Drag numbers to complete the proportion to represent the percent of strikeouts per at-bats.</u></em>
<em><u>Numbers may be used once or not at all.</u></em>
<em><u /></em>
<em><u>Part B</u></em>
<em><u>What percentage of times at bat did Emerson actually hit the ball?</u></em>
Part A
Total number of strikeouts= 30+40+42= 112
Total number of at bats = 90+120+140= 350
strikeouts : times
112: 350
p:100
Using cross product rule
p/100= 112/350
p * 350= 112*100
or p= 11200/350= 32
It means that there were 32 strikeouts if 100 times were bat at hits.
Part B:
Total number of strikeouts= 30+40+42= 112
Total number of at bats = 90+120+140= 350
But we need the percentage of times at bat hit
Therefore
Hits= times - strikeouts= 350-112= 238
Percentage = 238/352*100= 67.613
Check
The above answers are correct because
100-32 = 68
68 ≅ 67.613
Differentiate both sides of the equation.<span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span></span>Differentiate the left side of the equation.Tap for fewer steps...By the Sum Rule, the derivative of <span><span><span>x3</span>+<span>y3</span></span><span><span>x3</span>+<span>y3</span></span></span> with respect to <span>xx</span> is <span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.<span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=3</span><span>n=3</span></span>.<span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Evaluate <span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.Tap for more steps...<span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span></span>Differentiate the right side of the equation.Tap for fewer steps...Since <span>1818</span> is constant with respect to <span>xx</span>, the derivative of <span><span>18xy</span><span>18xy</span></span> with respect to <span>xx</span> is <span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>.<span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>Differentiate using the Product Rule which states that <span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span></span> is <span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span></span> where <span><span>f<span>(x)</span>=x</span><span>f<span>(x)</span>=x</span></span> and <span><span>g<span>(x)</span>=y</span><span>g<span>(x)</span>=y</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Rewrite <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span> as <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=1</span><span>n=1</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span></span>Multiply <span>yy</span> by <span>11</span> to get <span>yy</span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span></span>Simplify.Tap for more steps...<span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span></span>Reform the equation by setting the left side equal to the right side.<span><span>3<span>x2</span>+3<span>y2</span>y'=18xy'+18y</span><span>3<span>x2</span>+3<span>y2</span>y′=18xy′+18y</span></span>Since <span><span>18xy'</span><span>18xy′</span></span> contains the variable to solve for, move it to the left side of the equation by subtracting <span><span>18xy'</span><span>18xy′</span></span> from both sides.<span><span>3<span>x2</span>+3<span>y2</span>y'−18xy'=18y</span><span>3<span>x2</span>+3<span>y2</span>y′-18xy′=18y</span></span>Since <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> does not contain the variable to solve for, move it to the right side of the equation by subtracting <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> from both sides.<span><span>3<span>y2</span>y'−18xy'=−3<span>x2</span>+18y</span><span>3<span>y2</span>y′-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'−18xy'</span><span>3<span>y2</span>y′-18xy′</span></span>.Tap for fewer steps...Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'</span><span>3<span>y2</span>y′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>−18xy'=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>−18xy'</span><span>-18xy′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>+3y'<span>(−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>+3y′<span>(-6x)</span>=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3y'<span>y2</span>+3y'<span>(−6x)</span></span><span>3y′<span>y2</span>+3y′<span>(-6x)</span></span></span>.<span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span>Divide each term by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span> by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span>.<span><span><span><span>3y'<span>(<span>y2</span>−6x)</span></span><span><span>y2</span>−6x</span></span>=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span><span><span>3y′<span>(<span>y2</span>-6x)</span></span><span><span>y2</span>-6x</span></span>=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>3y'=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span>Divide each term by <span>33</span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span> by <span>33</span>.<span><span><span><span>3y'</span>3</span>=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span><span><span>3y′</span>3</span>=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>y'=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span>y′=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>y'=−<span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span><span>y′=-<span><span><span>x2</span>-6y</span><span><span>y2</span>-6x</span></span></span></span>Replace <span><span>y'</span><span>y′</span></span> with <span><span><span>dy</span><span>dx</span></span><span><span>dy</span><span>dx</span></span></span>.<span><span><span>dy</span><span>dx</span></span>=−<span><span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span></span>
Answer:
4
Step-by-step explanation:
Rearrange the equation so that its y=5x+4. Now you know the y-intercept is 4.
Hope this helps :D
Answer:
5,000,000= 625000 this many tickets if there 8 $
Step-by-step explanation:
And the ticket is 8$
How you would solve it is you take the number of money and divide it by how much each of the tickets are then the finished product is how many you have to sell.
Answer:
x = 26 degrees.
y = 106 degrees.
Step-by-step explanation:
3x - 4 = 74 (exterior alternate angles).
3x = 78
x = 26.
y = 180 - 74 = 106.