The formula to find the volume multiplies the length by the width by the height, so length is 7, the width is 2 and the height is 3.
7×2×3= 42
42 cubic units.
F x L = 3x10^10
L = 1x10^-11
F= 3x10^10 / 1x10^-11 = 3x10^21 unit
Answer:
241/3
Trying to find the cube root of 24
Factor 24
one of the factors should be a perfect cube and one will not
Of course you can also try cubing the choices given one of them will equal 24
Give it a try
I hope this helps
Not sure I'm right but:
If the bar weighs 9.25 ounces and 65% of the bar is gold, you'd do 65% of 9.25. So the answer would be <span>65% of 9.25= 6.0125</span>
This isn't an identity, so I assume you have to solve the equation.
(1 - sin(2<em>A</em>)) (1 + cot(2<em>A</em>)) = cot(2<em>A</em>)
1 - sin(2<em>A</em>) + cot(2<em>A</em>) - sin(2<em>A</em>) cot(2<em>A</em>) = cot(2<em>A</em>)
1 - sin(2<em>A</em>) - cos(2<em>A</em>) = 0
sin(2<em>A</em>) + cos(2<em>A</em>) = 1
Multiply both sides by 1/√2, which we want to do because cos(<em>π</em>/4) = sin(<em>π</em>/4) = 1/√2. This gives
cos(<em>π</em>/4) sin(2<em>A</em>) + sin(<em>π</em>/4) cos(2<em>A</em>) = 1/√2
Then condense the left side as
sin(2<em>A</em> + <em>π</em>/4) = 1/√2
2<em>A</em> + <em>π</em>/4 = sin⁻¹(1/√2) + 2<em>nπ</em> <u>or</u> 2<em>A</em> + <em>π</em>/4 = <em>π</em> - sin⁻¹(1/√2) + 2<em>nπ</em>
(where <em>n</em> is any integer)
2<em>A</em> + <em>π</em>/4 = <em>π</em>/4 + 2<em>nπ</em> <u>or</u> 2<em>A</em> + <em>π</em>/4 = 3<em>π</em>/4 + 2<em>nπ</em>
2<em>A</em> = 2<em>nπ</em> <u>or</u> 2<em>A</em> = <em>π</em>/2 + 2<em>nπ</em>
<em>A</em> = <em>nπ</em> <u>or</u> <em>A</em> = <em>π</em>/4 + <em>nπ</em>