1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
3 years ago
12

How do you interpret a slope and the y- intercept?

Mathematics
1 answer:
nexus9112 [7]3 years ago
8 0
The slope is rise over run, how many times you go up (or if down it'd be a negative) and over.
The y-intercept is what point on the y axis the line passes through
You might be interested in
Please help asap!! Due today!
Elena-2011 [213]

Answer:

25 cm

Step-by-step explanation:

a^2 + b^2 = c^2

7^2 + 24^2 = c^2

49 + 576 = c^2

c^2 = 625

c = 25

Answer: 25 cm

5 0
3 years ago
Pls please help me ASAP!!!
oksian1 [2.3K]

Answer:

z = 0

Step-by-step explanation:

3 (z + 7) = 21

3z + 21 = 21

3z = 0

z = 0

8 0
3 years ago
Help ill give brainliest
stellarik [79]

Answer:

$28.68

Step-by-step explanation:

57.24+64.08

121.32

150-121.32

6 0
3 years ago
Read 2 more answers
Find the 2th term of the expansion of (a-b)^4.​
vladimir1956 [14]

The second term of the expansion is -4a^3b.

Solution:

Given expression:

(a-b)^4

To find the second term of the expansion.

(a-b)^4

Using Binomial theorem,

(a+b)^{n}=\sum_{i=0}^{n}\left(\begin{array}{l}n \\i\end{array}\right) a^{(n-i)} b^{i}

Here, a = a and b = –b

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

Substitute i = 0, we get

$\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}=1 \cdot \frac{4 !}{0 !(4-0) !} a^{4}=a^4

Substitute i = 1, we get

$\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}=\frac{4 !}{3!} a^{3}(-b)=-4 a^{3} b

Substitute i = 2, we get

$\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}=\frac{12}{2 !} a^{2}(-b)^{2}=6 a^{2} b^{2}

Substitute i = 3, we get

$\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}=\frac{4}{1 !} a(-b)^{3}=-4 a b^{3}

Substitute i = 4, we get

$\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=1 \cdot \frac{(-b)^{4}}{(4-4) !}=b^{4}

Therefore,

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

=\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}+\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}+\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}+\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}+\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}

Hence the second term of the expansion is -4a^3b.

3 0
3 years ago
Write an algebraic expression for the following
MrRa [10]

Answer:

12t = c

Step-by-step explanation:

I believe that's it

8 0
3 years ago
Read 2 more answers
Other questions:
  • the snail moved 6 inches in 120 minutes. what was the average speed of the snail in inches per minute​
    10·1 answer
  • Wich is bigger 16.5 or 16.52 ?
    12·1 answer
  • Which of the following equations have graphs that are parallel to the graph of the equation y=-3/2x+8?
    9·1 answer
  • The ordered pairs (0, 2) and (1,6)
    12·1 answer
  • A circle has a diameter with endpoints A (-4,4) and B (2,-3) . Which coordinates represent the center of the circle?
    5·1 answer
  • Find the value of x.
    14·2 answers
  • Last ones !! i'll really appreciate it
    8·2 answers
  • 3(x - 5) - X<br> Match the equivalent expressions
    5·1 answer
  • Find the product. Simplify your answer. (m–4)(2m+2)
    6·2 answers
  • A line passes through (2, 8) and (4, 12). Which equation best represents the line? y = 1 over 2 x 6 y = 2x 7 y = 2x 4 y = 1 over
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!