1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
4 years ago
12

How do you interpret a slope and the y- intercept?

Mathematics
1 answer:
nexus9112 [7]4 years ago
8 0
The slope is rise over run, how many times you go up (or if down it'd be a negative) and over.
The y-intercept is what point on the y axis the line passes through
You might be interested in
What is the probability of rolling a 3 on one number cube and an even number on another number cube?
UkoKoshka [18]

Answer:

1/6

50%

Step-by-step explanation:

  • <em>The answer for part one is 1/6 because a cube has six sides. so your odds are 1/6 to get a 3</em>
  • <em>The odds of you rolling an even number vs an odd number is 50% because there are 3 even numbers and 3 odd numbers on a standard dice.</em>
4 0
3 years ago
Round the original numbers to the nearest whole number tenth and hundredth
lina2011 [118]

Whole number:

1. 5

2. 6

3. 6

Tenth:

1. 5.3

2. 5.8

3. 5.8

Hundredth:

1. 5.33

2. 5.76

3. 5.85

3 0
4 years ago
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
2 years ago
Please help me ASAP answer both questions
NNADVOKAT [17]

Answer:

b and c

Step-by-step explanation:

i did it

7 0
3 years ago
⦟KLJ and ⦟JLM are a linear pair. Find the measures of ⦟KLJ and ⦟JLM.
KATRIN_1 [288]

Answer:

Step-by-step explanation:

6x + 12 + 4x + 8 =  180 {Linear pair}

6x + 4x + 12 + 8 = 180 {Combine like terms}

         10x + 20  = 180   {Subtract 20 from both sides}

              10x =  180 - 20

             10x  = 160    {Divide both sides by 10}

               x = 160/10

                x = 16

m∠KLJ = 6*16 + 12

            = 96 +12

            = 108

m∠JLM = 4*16 + 8

            = 64 + 8

            = 72

8 0
3 years ago
Read 2 more answers
Other questions:
  • Answers:<br><br> AB // EH<br><br> FB // AB<br><br> AB // HG<br><br> DH // FG
    8·1 answer
  • explain how you know that the equations 1/4 equals 2x and 1/4 divided by x equals 2 have the same solution. Then, find the solut
    12·1 answer
  • Star bought a new pair of Ray Ban sunglasses, originally priced at $109.99, on sale for 25% with a 5% tax.
    12·1 answer
  • Solve for x. Round to the nearest hundredth.
    14·1 answer
  • B) Which is the better -17%off35$or12%off32?
    7·1 answer
  • How many solutions does the system of equations have?<br> What is the solution?
    12·1 answer
  • Please answer the following:
    11·1 answer
  • Greta is taking a road trip from Cincinnati to San Francisco. On the first day, she drove 650 miles in 10 hours. On the second d
    9·1 answer
  • 10x10^4 written as a single power
    7·2 answers
  • Find the y-intercept of the line on the graph.​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!