Lim as x approches 0 of (e^(5x) - 1 - 5x)/x^2 = lim as x approaches 0 of (5e^(5x) - 5)/2x = lim as x approaches 0 of 25e^(5x)/2 = 25/2 = 12.5
False.
The above statement is false because for intentionally
writing a check on an account with sufficient funds, it is only
considered illegal when it is intended for check kiting, it is written
above $100 and has been done more than once.
If it has been done
for the 1st time with the intent of depositing an amount to cover the
issued check, then it would not be illegal.
Wouldnt it be a dot on the line right in between 75 and 76 pointing towards the left? im not sure
Answer:
$24.84
Step-by-step explanation:
i did the work lol
give brainliest please
Answer:
The equivalent expression for the given expression
is
![4x^{3} y^{2}(\sqrt[3]{4xy} )](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%20%29)
Step-by-step explanation:
Given:
![\sqrt[3]{256x^{10}y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D)
Solution:
We will see first what is Cube rooting.
![\sqrt[3]{x^{3}} = x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B3%7D%7D%20%3D%20x)
Law of Indices

Now, applying above property we get
![\sqrt[3]{256x^{10}y^{7} }=\sqrt[3]{(4^{3}\times 4\times (x^{3})^{3}\times x\times (y^{2})^{3}\times y )} \\\\\textrm{Cube Rooting we get}\\\sqrt[3]{256x^{10}y^{7} }= 4\times x^{3}\times y^{2}(\sqrt[3]{4xy}) \\\\\sqrt[3]{256x^{10}y^{7} }= 4x^{3}y^{2}(\sqrt[3]{4xy})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D%3D%5Csqrt%5B3%5D%7B%284%5E%7B3%7D%5Ctimes%204%5Ctimes%20%28x%5E%7B3%7D%29%5E%7B3%7D%5Ctimes%20x%5Ctimes%20%28y%5E%7B2%7D%29%5E%7B3%7D%5Ctimes%20y%20%20%20%29%7D%20%5C%5C%5C%5C%5Ctextrm%7BCube%20Rooting%20we%20get%7D%5C%5C%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D%3D%204%5Ctimes%20x%5E%7B3%7D%5Ctimes%20y%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%29%20%5C%5C%5C%5C%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D%3D%204x%5E%7B3%7Dy%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%29)
∴ The equivalent expression for the given expression
is
![4x^{3} y^{2}(\sqrt[3]{4xy} )](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%20%29)