D, one number is positive and the other is negative. The only way it could equal 0 is to cross the other out. An example is, -5+5=0
so, let's keep in mind that

so let's make a quick table of those solutions, say A, B, C solutions with x,y,z liters of acid, with an acidity of 0.25, 0.40 and 0.60 respectively.

we know she's using "z" liters and those are 3 times as much as "y" liters, so z = 3y.
![\bf \begin{cases} x+y+3y=78\\ x+4y=78\\[-0.5em] \hrulefill\\ 0.25x+0.4y+0.6(3y)=35.1\\ 0.25x+0.4y=1.8y=35.1\\ 0.25x+2.2y=35.1 \end{cases}\implies \begin{cases} x+4y=78\\\\ 0.25x+2.2y=35.1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ x+4y=78\implies \boxed{x}=78-4y \\\\\\ \stackrel{\textit{using substitution on the 2nd equation}}{0.25\left( \boxed{78-4y} \right)+2.2y=35.1}\implies 19.5-y+2.2y=35.1](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%2By%2B3y%3D78%5C%5C%20x%2B4y%3D78%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%200.25x%2B0.4y%2B0.6%283y%29%3D35.1%5C%5C%200.25x%2B0.4y%3D1.8y%3D35.1%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20x%2B4y%3D78%5C%5C%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20x%2B4y%3D78%5Cimplies%20%5Cboxed%7Bx%7D%3D78-4y%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20substitution%20on%20the%202nd%20equation%7D%7D%7B0.25%5Cleft%28%20%5Cboxed%7B78-4y%7D%20%5Cright%29%2B2.2y%3D35.1%7D%5Cimplies%2019.5-y%2B2.2y%3D35.1)
![\bf 1.2y=15.6\implies y=\cfrac{15.6}{1.2}\implies \blacktriangleright y=13 \blacktriangleleft \\\\\\ x=78-4y\implies x=78-4(13)\implies \blacktriangleright x=26 \blacktriangleleft \\\\\\ z=3y\implies z=3(13)\implies \blacktriangleright z=39 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{25\%}{26}\qquad \stackrel{40\%}{13}\qquad \stackrel{60\%}{39}~\hfill](https://tex.z-dn.net/?f=%5Cbf%201.2y%3D15.6%5Cimplies%20y%3D%5Ccfrac%7B15.6%7D%7B1.2%7D%5Cimplies%20%5Cblacktriangleright%20y%3D13%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20x%3D78-4y%5Cimplies%20x%3D78-4%2813%29%5Cimplies%20%5Cblacktriangleright%20x%3D26%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20z%3D3y%5Cimplies%20z%3D3%2813%29%5Cimplies%20%5Cblacktriangleright%20z%3D39%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B25%5C%25%7D%7B26%7D%5Cqquad%20%5Cstackrel%7B40%5C%25%7D%7B13%7D%5Cqquad%20%5Cstackrel%7B60%5C%25%7D%7B39%7D~%5Chfill)
476*1.05*1.15=574.77
The Striton family paid a total of $574.77 on their meal.
Answer:
The bottle of orange juice will have higher amounts of vitamin C per serving, as it will have 125 mg against 90 mg of the cranberry juice.
Step-by-step explanation:
To determine the amount of vitamin C in each serving of fruit juice, knowing that the bottle of orange juice contains 750 mg of vitamin C and 6 servings, while the bottle of cranberry juice contains 135 mg and 1.5 servings, you must perform the following calculation:
Orange: 750/6
Orange: 125 mg per serving
Cranberry: 135 / 1.5
Cranberry: 90 mg per serving
Thus, the bottle of orange juice will have higher amounts of vitamin C per serving, as it will have 125 mg against 90 mg of the cranberry juice.
To solve for the last side of the triangle, use the Pythagorean Theorem:
(8)^2 + x^2 = (9)^2
x = sqrt of 17
However, this is a NEGATIVE sqrt 17 because the terminal side is in quadrant 4, meaning that this side is under the X-axis and therefore negative.
Now that you know the side opposite of u in the triangle, do opposite/hypotenuse.
sin u = -(sqrt 17)/9