Answer:
![[p-|p|*10^{-3} \, , \, p+|p|* 10^-3]](https://tex.z-dn.net/?f=%5Bp-%7Cp%7C%2A10%5E%7B-3%7D%20%5C%2C%20%2C%20%5C%2C%20p%2B%7Cp%7C%2A%2010%5E-3%5D)
Step-by-step explanation
The relative error is the absolute error divided by the absolute value of p. for an approximation p*, the relative error is
r = |p*-p|/|p|
we want r to be at most 10⁻³, thus
|p*-p|/|p| ≤ 10⁻³
|p*-p| ≤ |p|* 10⁻³
therefore, p*-p should lie in the interval [ - |p| * 10⁻³ , |p| * 10⁻³ ], and as a consecuence, p* should be in the interval [p - |p| * 10⁻³ , p + |p| * 10⁻³ ]
The answer to your question is 2/4 which is 1/2
Answer:
$153
Step-by-step explanation:
To find the total cost, we have to calculate the area of one bead, then all of them:
Area of one bead = pi x r^2 = 3.14 x 0.5^2 = 3.14 x 0.25 = 0.765cm^2
Area of 20 beads = 0.765 x 20 = 15.3cm^2
Now, we are able to calculate the ultimate cost of coating:
If the cost is $10 per cm^2, then we have to find how much it costs to coat 15.3 cm^2.
15.3 x 10 = $153.
Hope this helps
A. You may set the variables in either order. But for argument sake, let's set as follows:
x = Amount of bookshelves
y = Amount of tables
B. Because of the amount of things you need to make, the following is an inequality using those variables.
x + y > 25
Plus you can determine a second inequality based on the amount of money that you have to spend.
20x + 45y < 675
Finally you may also add in that each value must be greater than or equal to zero, since they cannot have negative tables.
C. By solving the system and looking at basic constraints when graphed, you can see the feasible region has 4 vertices.
(0,0)
(18, 7)
(0, 15)
(33.75, 0) or (33, 0) if you insist on rounding.
What you have written down is correct, x=-3