Answer:
Step-by-step explanation:
Given that prices for a pair of shoes lie in the interval
[80,180] dollars.
Delivery fee 20% of price.
i.e. delivery fee will be in the interval [4, 9]
(1/20th of price)
Total cost= price of shoedelivery cost
Hence f(c) = c+c/20 = 21c/20
The domain of this function would be c lying between 80 to 180
So domain =[80,180]
---------------------------------
Amount to be repaid = 42 dollars
Once he received this amount, the price would be
105+42 =147
But since price range is only [21*80/20, 21*180/20]
=[84, 189]
Since now Albert has 147 dollars, he can afford is
[80,147]
y+43°= 180°( straight angle)
=>y= 180°-43°
=>y=137°
What do you need specifically just that one question
Answer:
y = 2
Step-by-step explanation:
Given
y + (4 - 2y) = 2 ← remove parenthesis on left side
y + 4 - 2y = 2, that is
- y + 4 = 2 ( subtract 4 from both sides )
- y = - 2 ( multiply both sides by - 1 )
y = 2
Answer:
The correct option is;
B. Yes. The ratios of towers to customers (thousands) are all equivalent to a unit rate of 52 Towers/(Thousand customers)
Step-by-step explanation:
The given data can be presented as follows;
Cell Phone Towers
Customer (thousands)
Towers
1) 5.25
273
2) 6.25
325
3) 7.25
377
4) 9.25
481
From the given data, we have the ratio Towers/Customer (thousands) given as follows;
For 1), we have;
273 Towers/(5.25 thousands customers) = 52 Towers/(Thousand customer)
For 2), we have;
325 Towers/(6.25 thousands customers) = 52 Towers/(Thousand customer)
For 3), we have;
377 Towers/(7.25 thousands customers) = 52 Towers/(Thousand customer)
For 4), we have;
481 Towers/(9.25 thousands customers) = 52 Towers/(Thousand customer)
Therefore, the ratios of towers to customers (thousands) all have the same equivalent unit rate of 52 Towers/(thousand customers).