1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mariarad [96]
3 years ago
5

You buy a $500 TV marked down 15% payment and agree to pay the balance in 12 equal monthly payments. How much is each payment

Mathematics
2 answers:
kaheart [24]3 years ago
7 0

Answer:

$35.42

Step-by-step explanation:

First we need to find what the price of the TV would be with the 15% off.  Its 15% off meaning its 85% of the original price.  In math, of means multiply so we can multiply 500 by 85% or 0.85.  500 times 0.85 is 425.  Now that we know the reduced price of the TV we can figure out the cost of each payment by dividing the price by 12 because there are 12 payments  425/12=35.42

I hope this helps and please don't hesitate to ask if there is anything still unclear!

goldenfox [79]3 years ago
7 0
If you are discounted 15% then the tv is going to cost $425 because you take %15 of $500 (which is $75) and the. You subtract that from $500 and that gives you $425. Now, you just divide that amount by $12 and that gives you about $35.42/month if you round up. Hopefully that’s the right answer.
You might be interested in
Write the number 3/100 as a decimal.
lianna [129]

Answer:

Step-by-step explanation

0.03.

7 0
3 years ago
How do i do this help
Ratling [72]
I don't know if u can see it, but there.
X=12
Y=15
Z=20

5 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
A ladybugs length measures 2cm express this measurement in meters explain your thinking include an equation with an exponent in
Ksivusya [100]
All we really need to do here is to convert 2 cm to meters.  There are 100 cm in 1 meter, so the appropriate cm to meters conversion factor is 

1 meter
-----------
100 cm

Thus, 

2 cm       1 m
-------- * ----------- = (1/50) m = 0.02 m      or  2.0*10^(-2) m     (answer)
    1        100 cm
7 0
2 years ago
You plan to take $450 u.s. on a trip to south africa. how many rands is this if one u.s. dollar equals 3.70 rands?
Mumz [18]
$1 = 3.70 rand

$450 is the same as 450 * $1, so multiply both sides of the conversion equation above by 450.

450 * $1 = 450 * 3.70 rand

$450 = 1665 rand
5 0
2 years ago
Other questions:
  • Beau made a new hamster house for Dr.cheeks out of 125.5 craft sticks. each stick weighs 0.5 ounce. How much does the hamster ho
    5·2 answers
  • What are the next three terms of the arithmetic sequence -18, -13, -8, -3,…?
    5·1 answer
  • Evaluate the algebraic expression 1.5t-7.2 for each given value.
    13·2 answers
  • Consider the following set of equations Equation A; y=-x+5 Equation b ;y=6x-2
    13·1 answer
  • In the formula rt = d, r is is rate t is time , and d is distance what is the rate for a runner who complete 7.5 miles in 1.5 ho
    11·2 answers
  • Find the missing side of the triangle.
    14·1 answer
  • In circle J with m ∠ H L K = 42 m∠HLK=42, find the m ∠ H J K m∠HJK.
    5·1 answer
  • Find the measure of the indicated angel
    15·1 answer
  • Work out the surface area of this cylinder <br> 8cm diameter<br> 16.8cm height
    11·1 answer
  • Triangles T1 and T2 are congruent.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!