Answer:
Center: (4,-13)
Radius: 17
Step-by-step explanation:
I guess you do not need an explanation, so I gave you only an answer.
Answer:
Quadratic
Step-by-step explanation:
A linear equation is just a line and an exponential function goes in the same direction
A quadratic us a parabola which has a turning point
Answer:

Step-by-step explanation:
I will work with radians.
![$\frac {\cos^2 \left(\frac{\pi}{2}-x \right)+\sin(-x)-\sin^2 \left(\frac{\pi}{2}-x \right)+\cos \left(\frac{\pi}{2}-x \right)} {[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]}$](https://tex.z-dn.net/?f=%24%5Cfrac%20%7B%5Ccos%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Csin%28-x%29-%5Csin%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Ccos%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%7D%20%7B%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%7D%24)
First, I will deal with the numerator

Consider the following trigonometric identities:




Therefore, the numerator will be

Once



Now let's deal with the numerator
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D)
Using the sum and difference identities:





Therefore,
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)] \implies [\sin(x)+\cos(x)] \cdot [\sin(x)\cos(x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%20%5Cimplies%20%5B%5Csin%28x%29%2B%5Ccos%28x%29%5D%20%5Ccdot%20%5B%5Csin%28x%29%5Ccos%28x%29%5D)
![\implies [p+4] \cdot [p \cdot 4]=4p^2+16p](https://tex.z-dn.net/?f=%5Cimplies%20%5Bp%2B4%5D%20%5Ccdot%20%5Bp%20%5Ccdot%204%5D%3D4p%5E2%2B16p)
The final expression will be

Answer:
see attached
Step-by-step explanation:
The domain is the horizontal extent of the graph. The graph extends to infinity in both directions horizontally (that's what the arrows mean). There are no "holes" because the open circle at x=-1 is matched by a filled circle at the same location.
__
The range is the vertical extent of the graph. The minimum is -3, which is included in the range. The maximum is infinity (as indicated by the up-pointing arrow).