Answer: True
Solution:
Rearrange the equation to the LHS:
[x^2 + 8x + 16] · [x^2 – 8x + 16] - (x^2 – 16)^2 = 0
Factoring x^2+8x+16
x^2 - 4x - 4x - 16
= (x-4) • (x-4)
= = (x+4)2
So now we have an equation
(x + 4)^2 • (x - 4)^2 - (x^2 - 16)^2 = 0
Step 2: Evaluate the following:
(x+4)2 = x^2+8x+16
(x-4)2 = x^2-8x+16
(x^2-16)2 = x^4-32x^2+256
(x^2+8x+16) (x^2-8x+16 ) - (x^4-32x^2+256 )
0 = 0
Hence True
108x/56x Hope that helps.
Answer:
x = (-5 ± 2√10) / 3
Step-by-step explanation:
5 − 10x − 3x² = 0
Write in standard form:
-3x² − 10x + 5 = 0
Solve with quadratic formula:
x = [ -b ± √(b² − 4ac) ] / 2a
x = [ -(-10) ± √((-10)² − 4(-3)(5)) ] / 2(-3)
x = [ 10 ± √(100 + 60) ] / -6
x = (10 ± 4√10) / -6
x = (-5 ± 2√10) / 3
Answer:
Do the parentheses first. then the operations. Then solve
Step-by-step explanation:
Answer:
1 to 5
Step-by-step explanation: