1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serggg [28]
3 years ago
10

What is a cat measures bye

Mathematics
2 answers:
Irina18 [472]3 years ago
4 0
A cat is measured by millimeters, feet, inches
Tju [1.3M]3 years ago
3 0
A cat can be measured in feet or in inches I hope this helps
You might be interested in
NEED HELP ASAP! Brainliest is only given to the RIGHT answer!
vladimir2022 [97]

Answer:

c is the correct answer

2(2x+4)<6(x+3)

Step-by-step explanation:

7 0
3 years ago
Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.8. (Round your ans
Alenkinab [10]

Answer:

a) 0.011 = 1.1% probability that the sample mean hardness for a random sample of 17 pins is at least 51

b) 0.0001 = 0.1% probability that the sample mean hardness for a random sample of 45 pins is at least 51

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this problem, we have that:

\mu = 50, \sigma = 1.8

(a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 17 pins is at least 51?

Here n = 17, s = \frac{1.8}{\sqrt{17}} = 0.4366

This probability is 1 subtracted by the pvalue of Z when X = 51. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{51 - 50}{0.4366}

Z = 2.29

Z = 2.29 has a pvalue of 0.9890

1 - 0.989 = 0.011

0.011 = 1.1% probability that the sample mean hardness for a random sample of 17 pins is at least 51

(b) What is the (approximate) probability that the sample mean hardness for a random sample of 45 pins is at least 51?

Here n = 17, s = \frac{1.8}{\sqrt{45}} = 0.2683

Z = \frac{X - \mu}{s}

Z = \frac{51 - 50}{0.0.2683}

Z = 3.73

Z = 3.73 has a pvalue of 0.9999

1 - 0.9999 = 0.0001

0.0001 = 0.1% probability that the sample mean hardness for a random sample of 45 pins is at least 51

8 0
3 years ago
What is 44 hundereths in it's simplest form?
Serga [27]
22/25 i believe... i hope this helps

5 0
3 years ago
Suppose Upper F Superscript prime Baseline left-parenthesis x right-parenthesis equals 3 x Superscript 2 Baseline plus 7 and Upp
Sedaia [141]

It looks like you're given

<em>F'(x)</em> = 3<em>x</em>² + 7

and

<em>F</em> (0) = 5

and you're asked to find <em>F(b)</em> for the values of <em>b</em> in the list {0, 0.1, 0.2, 0.5, 2.0}.

The first is done for you, <em>F</em> (0) = 5.

For the remaining <em>b</em>, you can solve for <em>F(x)</em> exactly by using the fundamental theorem of calculus:

F(x)=F(0)+\displaystyle\int_0^x F'(t)\,\mathrm dt

F(x)=5+\displaystyle\int_0^x(3t^2+7)\,\mathrm dt

F(x)=5+(t^3+7t)\bigg|_0^x

F(x)=5+x^3+7x

Then <em>F</em> (0.1) = 5.701, <em>F</em> (0.2) = 6.408, <em>F</em> (0.5) = 8.625, and <em>F</em> (2.0) = 27.

On the other hand, if you're expected to <em>approximate</em> <em>F</em> at the given <em>b</em>, you can use the linear approximation to <em>F(x)</em> around <em>x</em> = 0, which is

<em>F(x)</em> ≈ <em>L(x)</em> = <em>F</em> (0) + <em>F'</em> (0) (<em>x</em> - 0) = 5 + 7<em>x</em>

Then <em>F</em> (0) = 5, <em>F</em> (0.1) ≈ 5.7, <em>F</em> (0.2) ≈ 6.4, <em>F</em> (0.5) ≈ 8.5, and <em>F</em> (2.0) ≈ 19. Notice how the error gets larger the further away <em>b </em>gets from 0.

A <em>better</em> numerical method would be Euler's method. Given <em>F'(x)</em>, we iteratively use the linear approximation at successive points to get closer approximations to the actual values of <em>F(x)</em>.

Let <em>y(x)</em> = <em>F(x)</em>. Starting with <em>x</em>₀ = 0 and <em>y</em>₀ = <em>F(x</em>₀<em>)</em> = 5, we have

<em>x</em>₁ = <em>x</em>₀ + 0.1 = 0.1

<em>y</em>₁ = <em>y</em>₀ + <em>F'(x</em>₀<em>)</em> (<em>x</em>₁ - <em>x</em>₀) = 5 + 7 (0.1 - 0)   →   <em>F</em> (0.1) ≈ 5.7

<em>x</em>₂ = <em>x</em>₁ + 0.1 = 0.2

<em>y</em>₂ = <em>y</em>₁ + <em>F'(x</em>₁<em>)</em> (<em>x</em>₂ - <em>x</em>₁) = 5.7 + 7.03 (0.2 - 0.1)   →   <em>F</em> (0.2) ≈ 6.403

<em>x</em>₃ = <em>x</em>₂ + 0.3 = 0.5

<em>y</em>₃ = <em>y</em>₂ + <em>F'(x</em>₂<em>)</em> (<em>x</em>₃ - <em>x</em>₂) = 6.403 + 7.12 (0.5 - 0.2)   →   <em>F</em> (0.5) ≈ 8.539

<em>x</em>₄ = <em>x</em>₃ + 1.5 = 2.0

<em>y</em>₄ = <em>y</em>₃ + <em>F'(x</em>₃<em>)</em> (<em>x</em>₄ - <em>x</em>₃) = 8.539 + 7.75 (2.0 - 0.5)   →   <em>F</em> (2.0) ≈ 20.164

4 0
3 years ago
Divide 32 students into 2 groups so the ratio is two to five how many students with be in each group
Valentin [98]

Answer:

they can be divided into

2 groups of 16

4 groups of 8

8 groups of 4

16 groups of 2

5 0
2 years ago
Other questions:
  • A rectangular tank, 1 1/2m long and 1m wide,
    12·1 answer
  • Alex's work for the following quiz problem is as follows: Is Alex correct? if it's incorrect, what is the correct solution?
    11·1 answer
  • What is the equation of the following line? Be sure to scroll down first to see
    15·1 answer
  • Find the coefficient is x in 4(8-2x).
    13·2 answers
  • PLEASE HELP, WILL GIVE BRAINLIEST!!
    8·1 answer
  • I idk how to put this please help me understand better
    13·1 answer
  • Make r the subject of the formula t=r/r-3
    5·2 answers
  • Combine Like Terms : 12x^4-2x+6x^4-10x
    15·1 answer
  • two of the interior angles of a polygon are 134° and 156° and each of the remaining angles is 151°. find no of sides of the poly
    11·1 answer
  • ⚠️6TH GRADE MATH PLEASE HELP I WILL MARK CROWN⚠️
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!