I believe it is linear association, and positive association
<u>Given</u>:
Four coordinates lying on the 3rd quadrant of the Cartesian plane are as follows: 
- C' = (–6, –5)
- D' = (–6, –3)
- E' = (–4, –3)
- F' = (–4, –5)
<u>Translation</u>:
Since you've been asked to translate the coordinates of the vertices 2 units right and 8 units up, you'll need to add 2 to its x-coordinate and 8 to its y-coordinate.
C'(–6, –5)
ㅤㅤ= C'(–6 + 2, –5 + 8)
ㅤㅤ= C'(–4, 3)
D'(–6, –3)
ㅤㅤ= D'(–6 + 2, –3 + 8)
ㅤㅤ= D'(–4, 5)
E'(–4, –3)
ㅤㅤ= E'(–4 + 2, –3 + 8)
ㅤㅤ= E'(–2, 5)
F'(–4, –5)
ㅤㅤ= F'(–4 + 2, –5 + 8)
ㅤㅤ= F'(–2, 3)
<u>Final </u><u>answer</u>:
- C' = (–4, 3)
- D' = (–4, 5)
- E' = (–2, 5)
- F' = (–2, 3)
Answer:
5 = side a
3 = side c
angle B = 62 degrees
JK is side b
Use the Law of Cosines to find the length of side b.
b^2 = a^2 + c^2 − 2ac cos(B)
b^2 = (5^2 + 3^2) − ( 2 x 5 x 3) cos(62°)
b^2 = (25 + 9) − 30 x 0.469
b^2 = 34 - 30 x 0.469
b^2 = 34 - 14.084
b^2 = 19.916
b = √19.916
b = 4.463
Rounded to the nearest tenth is 4.5 mm.
Hope this helps!
Step-by-step explanation:
The length of tom's block on his map is 11.25 inches
Answer:
3¼
Step-by-step explanation:

We take any of the two points shown in the question. I will take (-3, 1) and (1, 14).
x¹ = -3
y¹ = 1
x² = 1
y² = 14
Now, we sub these figures into the formula.

This leaves us with 14-1/1+3, which we can make into 13/4
13/4 = 3¼
<em>Disclaimer</em><em>:</em><em> </em><em>It</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>actually</em><em> </em><em>x</em><em> </em><em>(</em><em>or</em><em> </em><em>y</em><em>)</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>power</em><em> </em><em>of</em><em> </em><em>two</em><em>,</em><em> </em><em>but</em><em> </em><em>a</em><em> </em><em>way</em><em> </em><em>to</em><em> </em><em>distinguish</em><em> </em><em>one</em><em> </em><em>x</em><em> </em><em>(</em><em>or</em><em> </em><em>y</em><em>)</em><em> </em><em>from</em><em> </em><em>the</em><em> </em><em>other</em><em>.</em><em> </em><em>It</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>label</em><em> </em><em>of</em><em> </em><em>sorts</em><em>.</em>