Answer:
Explanation:
Vascular plants have tubelike structures that carry water, nutrients, and other substances throughout the plant. Nonvascular plants do not have these tubelike structures and use other ways to move water and substances.
Vascular plants are said to have a true stem, leaves, and roots due to the presence of vascular tissues. Non-vascular plants do not have true roots, stems, or leaves and the tissues present are the least specialized forms of tissue. Some examples of vascular plants include maize, mustard, rose, cycad, ferns, clubmosses, grasses. Some examples of non-vascular plants include moss, algae, liverwort, and hornwort.
How vascular plants work through osmosis
The xylem of vascular plants consists of dead cells placed end to end that form tunnels through which water and minerals move upward from the roots to the rest of the plant. Through the xylem vessels, water enters and leaves cells through osmosis.
How non vascular plants work through osmosis
Because non vascular plants do not have the xylem and phloem ystem, they absorb water right into their cells through their leaves when it rains or when dew falls. Internal cells get their water by passive osmosis. While, they use rhizoids to transport nutrients and minerals.
Answer:
Aerobic means with oxygen.
Answer:
Aggregate fruit is a fruit that develops from several ovaries forming one flower. An example of an aggregate fruit is a raspberry. Multiple fruit is fruit that develops from a cluster of flowers, and each flower produces a fruit, which turns into a mass of a singular fruit. An example of multiple fruit is a pineapple. Each "cube" of a pineapple is a separate fruit formed from a single flower, yet the pineapple as a whole is one mass of pineapple.
That would defined having a concussion
Answer:
carbon dioxide and oxygen
Explanation:
Carbon dioxide is the waste product of cellular respiration that you breathe out each time you breathe. Blood picks up oxygen and releases carbon dioxide in the lungs. The opposite takes place in the cells where the blood releases oxygen and picks up carbon dioxide.