Answer:
hence the required minimum production level is 12units
Step-by-step explanation:
Given the cost function expressed as c(x) = x^3 - 24x^2 + 30,000x
The average cost function will be c(x)/x
Dividing the cost function through by x
Average cost function = c(x)/x = x³/x - 24x²/x + 30,000x/x
Average cost function = x²-24x + 30,000
A(x) = x²-24x + 30,000
If the average cost is minimized, hence dA/dx = 0
dA/dx = 2x - 24
0 = 2x - 24
-2x = -24
Divide both sides by -2
-2x/-2 = -24/-2
x = 12
For the second deriviative
d²A/dx² = 2 which is greater than zero
Hence a production level that will minimize the average cost per item of making x items is 12
Answer:
The population of interest is composed by all mean that live in Laramie.
Step-by-step explanation:
Sampling
This is a common statistics practice, when we want to study something from a population, we find a sample of this population.
For example:
I want to estimate the proportion of New York state residents who are Buffalo Bills fans. So i ask, lets say, 1000 randomly selected New York state residents whether they are Buffalo Bills fans, and expand this to the entire population of New York State residents.
In this question:
Sample of 100 men from Laramie. This means that the population of interest is composed by all mean that live in Laramie.
Answer:
(7x+6y) is a binomial factor of the given expression 
Therefore 
Step-by-step explanation:
Given expression is 
To find the binomial factor :

Rewritting the above expression as


( using the formula
here a=7x and y=6y )
( using the formula
)
Therefore 
(7x+6y) is a binomial factor of the given expression 
Number 1 should be the one with the graph
Answer:
203 feet.
Step-by-step explanation:
Please find the attachment.
Let h represent the height of the building.
We have been given that at 3:30 in the afternoon in mid-September the Kimball Tower casts a shadow about 290 feet long when the sun's rays come down at an angle about 35 degrees above the horizontal.
We know that tangent relates opposite side of a right triangle to its adjacent side.

Upon substituting our given values in above formula, we will get:






Therefore, the building is approximately 203 feet high.