Answer:
w= 9
Step-by-step explanation:

Square both sides:
-4w +61= (w -4)²

Expand:
-4w +61= w² -2(w)(4) +4²
-4w +61= w² -8w +16
Simplify:
w² -8w +16 +4w -61= 0
w² -4w -45= 0
Factorize:
(w -9)(w +5)= 0
w -9= 0 or w +5= 0
w= 9 or w= -5 (reject)
Note:
-5 is rejected since we are only taking the positive value of the square root here. If the negative square root is taken into consideration, then w= -5 would give us -9 on both sides of the equation.
<u>Why </u><u>do </u><u>we </u><u>use </u><u>negative </u><u>square </u><u>root?</u>
When solving an equation such as x²= 4,
we have to consider than squaring any number removes the negative sign i.e., the result of a squared number is always positive.
In the case of x²= 4, x can be 2 or -2. Thus, whenever we introduce a square root, a '±' must be used.
However, back to our question, we did not introduce the square root so we should not consider the negative square root value.
Answer:
x+5+\frac{1}{x-2}
X + 5 + 1/( x - 2)
Step-by-step explanation:
I would recomend using Symbolab to help you understand math like this in an easy step-by-step manner. It will take a while to explain so you can see how to solve these problems through that!
Answer:
So, the volume is:

Step-by-step explanation:
We get the limits of integration:

We use the spherical coordinates and we calculate a triple integral:
![V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\int_0^4 \rho^2 \sin \varphi \, d\rho\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \left[\frac{\rho^3}{3}\right]_0^4\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \cdot \frac{64}{3} \, d\varphi\, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} [-\cos \varphi]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\](https://tex.z-dn.net/?f=V%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%5Cint_0%5E4%20%20%5Crho%5E2%20%5Csin%20%5Cvarphi%20%5C%2C%20d%5Crho%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Cleft%5B%5Cfrac%7B%5Crho%5E3%7D%7B3%7D%5Cright%5D_0%5E4%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Ccdot%20%5Cfrac%7B64%7D%7B3%7D%20%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5B-%5Ccos%20%5Cvarphi%5D_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5C)
we get:
![V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\V=\frac{64\sqrt{2}}{3}\cdot[\theta]_0^{2\pi}\\\\V=\frac{128\sqrt{2}\pi}{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%5Csqrt%7B2%7D%7D%7B3%7D%5Ccdot%5B%5Ctheta%5D_0%5E%7B2%5Cpi%7D%5C%5C%5C%5CV%3D%5Cfrac%7B128%5Csqrt%7B2%7D%5Cpi%7D%7B3%7D)
So, the volume is:

penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis penis
45 stickers because 1145 - 1100 = 45.