1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
salantis [7]
3 years ago
12

What is the value of s?

Mathematics
1 answer:
stepan [7]3 years ago
5 0

Answer:

<o=180-132=48

so,<s=24(The angle at the circumference is half of its corresponding angle at center)

You might be interested in
Hi! i’ll give brainliest please help
Firlakuza [10]

Answer:

Is it deposition

Step-by-step explanation:

4 0
3 years ago
One positive number is 1/5 of another number the difference of the two numbers is 72 find the numbers
SpyIntel [72]

Let x be the lowest positive number  Then  the other number = 5x.

So 5x - x = 72

4x = 72

x = 18

So the numbers are 18 and 90  answer

8 0
3 years ago
Volume of a cylinder with a radius of 13 in and height of 30 in
Elodia [21]

Answer:

V≈15927.87 in³

Step-by-step explanation:

The volume of a cylinder is found by multiplying the area of its top or base by its height and is defined as: V = π*r²*· h

3 0
3 years ago
Read 2 more answers
Number 1d please help me analytical geometry
lesantik [10]
For a) is just the distance formula

\bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;A&({{ x}}\quad ,&{{ 1}})\quad &#10;%  (c,d)&#10;B&({{ -4}}\quad ,&{{ 1}})&#10;\end{array}\qquad &#10;%  distance value&#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}&#10;\\\\\\&#10;\sqrt{8} = \sqrt{({{ -4}}-{{ x}})^2 + (1-1)^2}&#10;\end{array}
-----------------------------------------------------------------------------------------
for b)  is also the distance formula, just different coordinates and distance

\bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;A&({{ -7}}\quad ,&{{ y}})\quad &#10;%  (c,d)&#10;B&({{ -3}}\quad ,&{{ 4}})&#10;\end{array}\ \ &#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}&#10;\\\\\\&#10;4\sqrt{2} = \sqrt{(-3-(-7))^2+(4-y)^2}&#10;\end{array}
--------------------------------------------------------------------------
for c)  well... we know AB = BC.... we do have the coordinates for A and B
so... find the distance for AB, that is \bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;A&({{ -3}}\quad ,&{{ 0}})\quad &#10;%  (c,d)&#10;B&({{ 5}}\quad ,&{{ -2}})&#10;\end{array}\qquad &#10;%  distance value&#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\&#10;d=\boxed{?}&#10;&#10;\end{array}

now.. whatever that is, is  = BC, so  the distance for BC is

\bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;B&({{ 5}}\quad ,&{{ -2}})\quad &#10;%  (c,d)&#10;C&({{ -13}}\quad ,&{{ y}})&#10;\end{array}\qquad &#10;%  distance value&#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\&#10;d=BC\\\\&#10;BC=\boxed{?}&#10;&#10;\end{array}

so... whatever distance you get for AB, set it equals to BC, BC will be in "y-terms" since the C point has a variable in its ordered points

so.. .solve AB = BC for "y"
------------------------------------------------------------------------------------

now d)   we know M and N are equidistant to P, that simply means that P is the midpoint of the segment MN

so use the midpoint formula

\bf \textit{middle point of 2 points }\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;M&({{-2}}\quad ,&{{ 1}})\quad &#10;%  (c,d)&#10;N&({{ x}}\quad ,&{{ 1}})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=P&#10;\\\\\\&#10;

\bf \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=(1,4)\implies &#10;\begin{cases}&#10;\cfrac{{{ x_2}} + {{ x_1}}}{2}=1\leftarrow \textit{solve for "x"}\\\\&#10;\cfrac{{{ y_2}} + {{ y_1}}}{2}=4&#10;\end{cases}

now, for d), you can also just use the distance formula, find the distance for MP, then since MP = PN, find the distance for PN in x-terms and then set it to equal to MP and solve for "x"


7 0
3 years ago
Pls help me with this!
joja [24]

Answer:

A = 78.5 cm²

Step-by-step explanation:

Area = π · radius²

if diameter is 10 then radius is 5

A = 5²·π

A = 25 × 3.14

A = 78.5 cm²

6 0
3 years ago
Other questions:
  • What is the volume of the container needed to store 0.8 moles of argon gas at 5.3 atm and 227°C?. . (Given: R = 0.08205 l · atm/
    9·2 answers
  • Which of the following systems is equivalent to the given system? 2/3x - y = 2
    7·1 answer
  • Find the Vertex of 2x^2+8x+1<br> A. (-2,-7)<br> B.(1,7)<br> C.(-2,-1)<br> D.(3,-4)
    15·1 answer
  • 1.5x=2.1x+37.44 i need help
    6·1 answer
  • You tell me can A triangle can be formed with side lengths 4 in, 5 in, and 8 in.
    9·1 answer
  • What is this quadratic equation written in standard form? -x^2+4=(3x-1)^2
    13·1 answer
  • Pls help what are u supposed to do?
    14·1 answer
  • Solve for x. Round to the nearest tenth, if necessary.
    5·1 answer
  • This is confusinggggg
    8·1 answer
  • Please help me asap<br><br> ty..
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!