Answer:

And we can find the individual probabilities using the probability mass function and we got:


And replacing we got:

Step-by-step explanation:
Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Solution to the problem
For this case we want this probability:

And we can use the complement rule and we got:

And we can find the individual probabilities using the probability mass function and we got:


And replacing we got:

Answer:
15a+12ac+6ab
Step-by-step explanation:
3a(5 + 4c + 2b)
5*3a = 15a
4c*3a = 12ac
2b*3a = 6ab
Answer:
250 litters
Step-by-step explanation:
To solve this question, we first need to know the conversion from cubic meter to liter.
1 cubic meter is equal to 1000 liters.
So, if we have 1/4 cubic meter, we can use a rule of three to find how many liters we will need:
1 m3 -> 1000 L
1/4 m3 -> x L
x * 1 = (1/4) * 1000
x = 1000 / 4 = 250 L
So we need 250 liters of water.
Answer:
1.3 ft
Step-by-step explanation:
perimeter = 140/35 = 4 ft
diameter = 4 ft/ 3.14 = 1.3 ft
Responder:
c. x menos 25 menos estilo en línea fracción 4 entre 19 fin estilo paréntesis izquierdo x menos 25 paréntesis derecho igual 3
Explicación paso a paso:
Dado lo siguiente:
Cantidad original de gasolina en el tanque de combustible = x
Gasolina consumida en el primer viaje = 25 litros
Gasolina restante después del primer viaje = (x - 25) litros
Gasolina consumida en el segundo viaje = 4/19 de lo que queda, es decir;
(4/19) * (x - 25)
Gasolina restante después del segundo viaje = 3 litros
Cantidad inicial - cantidad consumida en el primer viaje - 4/19 de la cantidad restante después del primer viaje = 3
La gasolina que queda después del segundo viaje se puede modelar mediante la ecuación:
x - 25 - 4/19 (x - 25) = 3