The equation would be NaBr
Question #1
Potasium hydroxide (known)
volume used is 25 ml
Molarity (concentration) = 0.150 M
Moles of KOH used
0.150 × 25/1000 = 0.00375 moles
Sulfuric acid (H2SO4)
volume used = 15.0 ml
unknown concentration
The equation for the reaction is
2KOH (aq)+ H2SO4(aq) = K2SO4(aq) + 2H2O(l)
Thus, the Mole ratio of KOH to H2SO4 is 2:1
Therefore, moles of H2SO4 used will be;
0.00375 × 1/2 = 0.001875 moles
Acid (sulfuric acid) concentration
0.001875 moles × 1000/15
= 0.125 M
Question #2
Hydrogen bromide (acid)
Volume used = 30 ml
Concentration is 0.250 M
Moles of HBr used;
0.25 × 30/1000
= 0.0075 moles
Sodium Hydroxide (base)
Volume used 20 ml
Concentration (unknown)
The equation for the reaction is
NaOH + HBr = NaBr + H2O
The mole ratio of NaOH : HBr is 1 : 1
Therefore, moles of NaOH used;
= 0.0075 moles
NaOH concentration will be
= 0.0075 moles × 1000/20
= 0.375 M
Answer:
When ice changes into liquid water it melts. The solidified ice in the frozen, would melt via the burning sun shooting its streaks down at the ice. Which causes the ice to melt, and turn into liquid water.
Explanation:
pp poopoo
I think the answer is number D…. I think
Answer:
14.4g
Explanation:
First, we need to write a balanced equation for the reaction between Fe and O2 to produce Fe2O3. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
From the balanced equation,
4moles of Fe produced 2moles of Fe2O3.
Therefore, 0.18mol of Fe will produce = (0.18x2) /4 = 0.09mol of Fe2O3.
Now we need to find the mass present in 0.09mol of Fe2O3. This can be achieved by doing the following:
Molar Mass of Fe2O3 = (56x2) + (16x3) = 112 + 48 = 160g/mol
Number of mole of Fe2O3 = 0.09mol
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass of Fe2O3 = 0.09 x 160 = 14.4g