1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
5

Describe the relationship between and when the two lines are perpendicular to . Also describe the relationship between and when

is not perpendicular to . Zoom in or out on the coordinate plane, if needed.
Mathematics
2 answers:
alexdok [17]3 years ago
6 0

Answer:

Perpendicular line is straight

damaskus [11]3 years ago
4 0

Answer:

When GF and CD are perpendicular to AB, they do not intersect each other. When CD is not perpendicular to AB, GF and CD intersect at a single point.

Step-by-step explanation:

PLATO

You might be interested in
Set up but do not solve for the appropriate particular solution yp for the differential equation y′′+4y=5xcos(2x) using the Meth
taurus [48]

Answer:

So, solution of  the differential equation is

y(t)=-\frac{5x^2}{4}\cot 2x\cdot \cos  2x+c_1e^{-2it}+c_2e^{2it}\\

Step-by-step explanation:

We have the given differential equation: y′′+4y=5xcos(2x)

We use the Method of Undetermined Coefficients.

We first solve the homogeneous differential equation y′′+4y=0.

y''+4y=0\\\\r^2+4=0\\\\r=\pm2i\\\\

It is a homogeneous solution:

y_h(t)=c_1e^{-2i t}+c_2e^{2i t}

Now, we finding a particular solution.

y_p(t)=A5x\cos 2x\\\\y'_p(t)=A5\cos 2x-A10x\sin 2x\\\\y''_p(t)=-A20\sin 2x-A20x\cos 2x\\\\\\\implies y''+4y=5x\cos 2x\\\\-A20\sin 2x-A20x\cos 2x+4\cdot A5x\cos 2x=5x\cos 2x\\\\-A20\sin 2x=5x\cos 2x\\\\A=-\frac{x}{4} \cot 2x\\

we get

y_p(t)=A5\cos 2x\\\\y_p(t)=-\frac{5x^2}{4}\cot 2x\cdot \cos  2x\\\\\\y(t)=y_p(t)+y_h(t)\\\\y(t)=-\frac{5x^2}{4}\cot 2x\cdot \cos  2x+c_1e^{-2it}+c_2e^{2it}\\

So, solution of  the differential equation is

y(t)=-\frac{5x^2}{4}\cot 2x\cdot \cos  2x+c_1e^{-2it}+c_2e^{2it}\\

7 0
3 years ago
Find the value of x for which d ||m.
Agata [3.3K]

Answer:

29

Step-by-step explanation:

4 0
2 years ago
Evaluate the surface integral:S
rjkz [21]
Assuming S does not include the plane z=0, we can parameterize the region in spherical coordinates using

\mathbf r(u,v)=\left\langle3\cos u\sin v,3\sin u\sin v,3\cos v\right\rangle

where 0\le u\le2\pi and 0\le v\le\dfrac\pi/2. We then have

x^2+y^2=9\cos^2u\sin^2v+9\sin^2u\sin^2v=9\sin^2v
(x^2+y^2)=9\sin^2v(3\cos v)=27\sin^2v\cos v

Then the surface integral is equivalent to

\displaystyle\iint_S(x^2+y^2)z\,\mathrm dS=27\int_{u=0}^{u=2\pi}\int_{v=0}^{v=\pi/2}\sin^2v\cos v\left\|\frac{\partial\mathbf r(u,v)}{\partial u}\times \frac{\partial\mathbf r(u,v)}{\partial u}\right\|\,\mathrm dv\,\mathrm du

We have

\dfrac{\partial\mathbf r(u,v)}{\partial u}=\langle-3\sin u\sin v,3\cos u\sin v,0\rangle
\dfrac{\partial\mathbf r(u,v)}{\partial v}=\langle3\cos u\cos v,3\sin u\cos v,-3\sin v\rangle
\implies\dfrac{\partial\mathbf r(u,v)}{\partial u}\times\dfrac{\partial\mathbf r(u,v)}{\partial v}=\langle-9\cos u\sin^2v,-9\sin u\sin^2v,-9\cos v\sin v\rangle
\implies\left\|\dfrac{\partial\mathbf r(u,v)}{\partial u}\times\dfrac{\partial\mathbf r(u,v)}{\partial v}\|=9\sin v

So the surface integral is equivalent to

\displaystyle243\int_{u=0}^{u=2\pi}\int_{v=0}^{v=\pi/2}\sin^3v\cos v\,\mathrm dv\,\mathrm du
=\displaystyle486\pi\int_{v=0}^{v=\pi/2}\sin^3v\cos v\,\mathrm dv
=\displaystyle486\pi\int_{w=0}^{w=1}w^3\,\mathrm dw

where w=\sin v\implies\mathrm dw=\cos v\,\mathrm dv.

=\dfrac{243}2\pi w^4\bigg|_{w=0}^{w=1}
=\dfrac{243}2\pi
4 0
2 years ago
How do you solve this equation 2x+5y=11 -3x+8y=-1
Brums [2.3K]
5y=3x...............
4 0
3 years ago
A cylinder’s volume can be calculated by the formula V=pir^2h , where V stands for volume, R for the base radius and H for the c
sasho [114]

Answer:

Step-by-step explanation:

Formula

V pi * r^2 * h

Givens

r = 3 m

h = 6 m

pi = 3.14 when used.

Solution

V = pi r^2 * h

V = pi * 3^2 * 6

V = 9 * 6 * pi

V = 54 * pi  Volume in terms of pi

V = 54*3.14 Volume using a value for pi

V = 169.56 to the hundred's place.

3 0
2 years ago
Other questions:
  • (Please answer before 5:15 P.M tonight)
    11·1 answer
  • Two lines intersect to form four angles. The measure of one angle is 27 degrees. Draw a diagram to show the measures of the othe
    14·1 answer
  • Find the common difference of an Arithmetic progression of 7,11,15,19...​
    6·1 answer
  • 3x+4=5メー10<br> How to slove
    5·2 answers
  • Will give brainliest to first correct answer. find missing length indicated
    5·1 answer
  • ∠DEF and ∠FEG are supplementary. m∠DEF=(3x+5)°, and m∠FEG=(2x)°. What is the measure of ∠DEF?
    7·1 answer
  • If it takes 7lb of flour to make 3 loaves of bread, how much flour is needed to make 7 loaves of bread?
    14·2 answers
  • SOMONE PLEASEE HELPPP MEEEEEEEE!!!
    12·1 answer
  • !!!! I'LL GIVE BRAINLIEST !!!!! PLS HELP THIS IS A TEST !!!
    13·1 answer
  • 1/2 book per day <br> Y=1/2x <br> Is this correct? Explain.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!