Answer:
a. 21 327 hot dogs/run
b. 70 runs/yr
c. 4 da/run
Step-by-step explanation:
Data:
Production rate (p) = 5000/da
Usage rate (u) = 260/da
Setup cost (S) = $66
Annual carrying cost (H) = $0.45/hot dog
Production days (d) = 294 da
Calculations:
a. Optimal run size
(i) Annual demand (D) = pd = (5000 hot dogs/1 day) × (294 days/1 yr)
= 1 470 000 hot dogs/yr
(ii) Economic run size



= 21 327 hot dogs/run
b. Number of runs per year
Runs = D/Q₀ = (1 470 000 hot dogs/1yr) × (1 run/21 327 hotdogs)
= 70 runs/yr
c. Length of a run
Length = Q₀/p = (21 327 hot dogs/1 run) × (1 da/5000 hot dogs)
= 4 da/run
Answer:
0
Step-by-step explanation:
calculate the change in y over the change in x. m=y2-y1/x2-x1
I think you are doing limits so this is what I did
and that's how I factored using the box method because it's easier to track distribution.
Answer: how many people are not allergic to any of the three choices? 22
How many people are allergic to all three choices? 1
How many people are allergic to both dogs and cats but not allergic to pollen? 7
How many people are allergic to cats only? 18
Step-by-step explanation: i took one for the team