The answer would be a. 288. hope that helped
Answer:
A) 99.7% of people have an IQ between 64 and 136.
B) 5% of people have an IQ score less than 76 or greater than 124.
C) 16% of people have an IQ score greater than 112.
Step-by-step explanation:
The Empirical Rule tells us that, in a normal or 'bell-shaped' distribution, 68% of the data is one standard deviation from the mean, 95% of the data is two standard deviations from the mean, and 99.7% of the data is three standard deviations from the mean.
A) 64 and 136 are 3 standard deviations away from the mean, so 99.7% of people have an IQ between 64 and 136.
B) 76 and 124 are 2 standard devations away from the mean, but the answer is asking what percentage is not between them. 100% - 95% gives us 5%.
C) 112 is one standard deviation away from the mean. If we want to find the percentage greater, then we can do 100% - 50% (as 112 is to the left of the mean), then we can take half of 68 to get 34%, and after subtracting 50% and 34% from the 100%, we get 16%.
(4x−101)(2x+3)
Apply the distributive property by multiplying each term of 4x−101 by each term of 2x+3.
8x²+12x−202x−303
Combine 12x and −202x.
8x²−190x−303
Answer:
44x,
Step-by-step explanation:
you can expand the brackets which equals 18x + 24 (or subtract 24 if the expression is 6(3x-4)) at the end of the equation you will add 2 which would give you 44x
You haven't provided the expression or the choices, therefore, I cannot provide an exact answer.
However, I'll try to help you understand the concept so that you can solve the question you have
Like radicals are characterized by the following:1- They both have the same root number (square root, cubic root , ...etc)
2- They both have the same radicand (meaning that the expression under the root is the same in both radicals)
Examples of like radicals:3

and 7

![\sqrt[5]{x^2y}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7Bx%5E2y%7D%20)
and 3
![\sqrt[5]{x^2y}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7Bx%5E2y%7D%20)
Check the choices you have. The one that satisfies the above two conditions would be your correct choice
Hope this helps :)