The derivitive of sec(x) is sec(x)tan(x)
find the slope at pi/3
sec(pi/3)=2
tan(pi/3)=√3
sec(x)tan(x) at x=pi/3 is 2√3
for slope=m and a point is (x1,y1)
the equation is
y-y1=m(x-x1)
slope=2√3
point=(pi/3,2)
equation is
y-2=2√3(x-pi/3)
A^2 -121 = a^2 -11^2 = (a-11)(a+11)
so the second choice is right sure
Well, 99 times 10 is 990, 990 plus 9 is 999. If you understand pls respond
First, solve for the missing side of the triangle:
a^2+b^2=c^2
100+b^2=144
b^2=44
b=6.63
15-6.63=8.37
8.37*10=83.7
The area of the parallelogram is (1/2(6.63*10))+ (1/2(6.63*10))+83.7
66.3+83.7
The area of the shape is 150 ft^2
Translated means the points are moving across the plane without rotating or changing shape. In this case, the x-coordinate would be moving up 5 (x + 5) and the y-coordinate would be moving to the left 4 (y - 4).
A is (-8, 6). A' is the result of the translation from this point. The results of the solution above in A is the point (-3, 2) = A'.
Now you must find the distance between these two coordinates. To find the distance you must use the distance formula: √<span>(x2 - x1)^2 + (y2 - y1)^2. Since you now have two points, A and A', plug these into the distance formula.
</span>√(-3 - (-8))^2 + (2 - 6)^2
√5^2 + (-4)^2
√25 + 16
√41
The distance from A to A' is √41.