1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
3 years ago
5

If f(x)=3x+1 and g(x)=x^2-6 find (f-g)(x)

Mathematics
2 answers:
8090 [49]3 years ago
6 0
Hi there!

• f(x) = 3x + 1
• g(x) = x² - 6

Then,
According to th' question :-

(f - g)(x) = f(x) - g(x)

= 3x + 1 - (x² - 6)

= 3x + 1 - x² + 6

= -x² + 3x + 7

Hence,
Option 2ⁿᵈ : -x² + 3x + 7 is Correct.

~ Hope it helps!
lord [1]3 years ago
6 0

Answer:

Option B. -x² + 3x + 7

Step-by-step explanation:

The given functions are f(x) = 3x + 1 and g(x) = x² - 6

we have to find the value of (f - g)(x)

Since (f - g)(x) = f(x) - g(x)

By replacing the values of f(x) and g(x) in the equation.

f(x) - g(x) = (3x + 1) - (x² - 6)

              = 3x + 1 - x² + 6

              = 3x + 7 - x²

              = -x² + 3x + 7

Therefore, option B. f(x) - g(x) = -x² + 3x + 7 is the correct option.

You might be interested in
A small rocket is fired from a launch pad 10 m above the ground with an initial velocity left angle 250 comma 450 comma 500 righ
jonny [76]

Let \vec r(t),\vec v(t),\vec a(t) denote the rocket's position, velocity, and acceleration vectors at time t.

We're given its initial position

\vec r(0)=\langle0,0,10\rangle\,\mathrm m

and velocity

\vec v(0)=\langle250,450,500\rangle\dfrac{\rm m}{\rm s}

Immediately after launch, the rocket is subject to gravity, so its acceleration is

\vec a(t)=\langle0,2.5,-g\rangle\dfrac{\rm m}{\mathrm s^2}

where g=9.8\frac{\rm m}{\mathrm s^2}.

a. We can obtain the velocity and position vectors by respectively integrating the acceleration and velocity functions. By the fundamental theorem of calculus,

\vec v(t)=\left(\vec v(0)+\displaystyle\int_0^t\vec a(u)\,\mathrm du\right)\dfrac{\rm m}{\rm s}

\vec v(t)=\left(\langle250,450,500\rangle+\langle0,2.5u,-gu\rangle\bigg|_0^t\right)\dfrac{\rm m}{\rm s}

(the integral of 0 is a constant, but it ultimately doesn't matter in this case)

\boxed{\vec v(t)=\langle250,450+2.5t,500-gt\rangle\dfrac{\rm m}{\rm s}}

and

\vec r(t)=\left(\vec r(0)+\displaystyle\int_0^t\vec v(u)\,\mathrm du\right)\,\rm m

\vec r(t)=\left(\langle0,0,10\rangle+\left\langle250u,450u+1.25u^2,500u-\dfrac g2u^2\right\rangle\bigg|_0^t\right)\,\rm m

\boxed{\vec r(t)=\left\langle250t,450t+1.25t^2,10+500t-\dfrac g2t^2\right\rangle\,\rm m}

b. The rocket stays in the air for as long as it takes until z=0, where z is the z-component of the position vector.

10+500t-\dfrac g2t^2=0\implies t\approx102\,\rm s

The range of the rocket is the distance between the rocket's final position and the origin (0, 0, 0):

\boxed{\|\vec r(102\,\mathrm s)\|\approx64,233\,\rm m}

c. The rocket reaches its maximum height when its vertical velocity (the z-component) is 0, at which point we have

-\left(500\dfrac{\rm m}{\rm s}\right)^2=-2g(z_{\rm max}-10\,\mathrm m)

\implies\boxed{z_{\rm max}=125,010\,\rm m}

7 0
3 years ago
I need help pls <br><br> I WILL GIVE BRAINLIEST <br> Pls help
uranmaximum [27]

Answer:

1. The square root of 100

2.c=27.11

d=13.96

e=12.6

<u>Step</u><u> </u><u>by</u><u> </u><u>step</u><u> </u><u>explanation</u><u>:</u><u> </u>

1. 2×50=100 the geometric mean is the square root of 100

2. The diagram is made up of three right angled triangles the big outer one and two triangles inside the big one thus we can use the pythagorean theorem to come up with expressions which will help us in solving the unknown parts as below.

c²=30²-d²

c²=e²+24²

d²=e²+6²

both the following add up to c² meaning they are equal:

c²=30²-d²

c²=e²+24²

thus

30²-d²=e²+24²

I want to remain with d² only thus;

30²-24²-e²=d²

900-576=324 (squareroot of 324=18) so

d²=18²-e² and d²=e²+6²

both the above add up to d² meaning they are equal thus;

18²-e²=e²+6²

18²-6²=e²+e²

324-36=2e²

318=2e²

159=e²

e=12.61

<em>Thus</em><em> </em><em>d</em><em>²</em><em>=</em><em>e</em><em>²</em><em>+</em><em>6</em><em>²</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>d</em><em>²</em><em>=</em><em>1</em><em>2</em><em>.</em><em>6</em><em>1</em><em>²</em><em>+</em><em>6</em><em>²</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>d</em><em>²</em><em>=</em><em>1</em><em>5</em><em>9</em><em>+</em><em>3</em><em>6</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>d</em><em>²</em><em>=</em><em>1</em><em>9</em><em>5</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>d</em><em>=</em><em>1</em><em>3</em><em>.</em><em>9</em><em>6</em>

<em>c</em><em>²</em><em>=</em><em>e</em><em>²</em><em>+</em><em>2</em><em>4</em><em>²</em>

<em>c</em><em>²</em><em>=</em><em>12.61</em><em>²</em><em>+</em><em>2</em><em>4</em><em>²</em>

<em>c</em><em>²</em><em>=</em><em>1</em><em>5</em><em>9</em><em>+</em><em>5</em><em>7</em><em>6</em>

<em>c</em><em>²</em><em>=</em><em>7</em><em>3</em><em>5</em>

<em>c</em><em>=</em><em>27.11</em>

<em> </em>

<em>I</em><em> </em><em>hope</em><em> </em><em>this</em><em> </em><em>helps</em>

3 0
3 years ago
Please help with 6 and 7
Ilya [14]

Answer:

6. The number is -5

7. The two numbers are 10 and 11

Step-by-step explanation:

Question six can be re-worded to create the following expression:

-2=\frac{4x+10}{5}

Solve for x to find the number:

-2=\frac{4x+10}{5}\\-10=4x+10\\-20=4x\\\frac{-20}{4} = x\\-5 = x

Question seven can be solved by first listing the constraints (assuming x is smaller than y):

  1. x and y are less than 20
  2. x + 1 = y
  3. 3x - 8 = 2y

To get the numbers, we can create a system of linear equations. First, solve for y in each expression:

y = x+1

2y = 3x-8\\y = \frac{3}{2}x - 4

Solve for x:

x+ 1 = \frac{3}{2}x - 4\\x + 5 = \frac{3}{2}x\\5 = \frac{3}{2}x - x\\5 = \frac{1}{2}x\\10 = x

Solve for y:

y = x + 1\\y = 10 + 1\\y= 11

4 0
2 years ago
Read 2 more answers
Can someone help me with these 3 plzzzz
aivan3 [116]
1 is 110. 2 is 65 and 3 is 35. You have to double 55 for the first question. For 2 you divide 2 from 130. And the third one shows the angle.
3 0
3 years ago
Avery invested $21,000 in an account paying an interest rate of 3.3% compounded continuously. Assuming no deposits or withdrawal
valentinak56 [21]

Answer:

10

Step-by-step explanation:

Answer from delta math

7 0
3 years ago
Other questions:
  • Which, if any, of
    14·1 answer
  • Solve each system by substitution.<br> 8). -7x-2y=-13<br> x-2y=11
    12·1 answer
  • Divide. express your answer in lowest terms. -7/10 divided (-4/5)
    15·1 answer
  • PLEASE HELP ASAP 30 PTS BRAINLIEST
    15·2 answers
  • One inch is 25.4 millimeters. Write 25.4 millimeters as a mixed number in simplest form.
    12·2 answers
  • Help fast please need answer quick​
    12·1 answer
  • Does anyone know how to do this
    12·1 answer
  • Help please will mark brainliest
    5·1 answer
  • Solve 64=V, where v is a real number. Simplify your answer as much as possible. If there is more than one solution, separate the
    9·1 answer
  • Weary of the low turnout in student elections, a college administration decides to choose an SRS of three students to form an ad
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!