Answer:
Both facilitated diffusion and active transport are selective processes. Only selective molecules are allowed to cross the membrane. They utilize carrier proteins to move across the membrane.
Explanation:
Diffusion is the process by which molecules move across a membrane respective of the concentration gradient. The plasma membrane is a <em>selectively permeable membrane</em> which allows specific molecules to move across the concentration gradient.
Molecules migrate from a region of higher concentration to a lower concentration in case of diffusion. It can be classified into simple diffusion and facilitated diffusion. These are examples of <em>passive transport</em>.
In facilitated diffusion molecules move across the concentration gradient with the help of <em>carrier proteins or channel proteins</em>. The carrier proteins bind to the molecule which has to be transported and change conformation to allow it to cross the membrane. For example glucose molecule is carried across through <em>GLUT transporter</em>. <em>Channel proteins</em> open a channel inside the membrane and molecules get transported across the gradient.
Active transport carries molecules against the concentration gradient with the assist of energy. ATP hydrolysis is utilized to generate energy. As a result of active transport, the molecules are aggregated on one side of the membrane.
Explanation:
<u>anaerobic process that restores NAD+ supply
</u>
<u></u>
Within cells, aerobic respiration may not occur due to several factors:
- - a lack of inorganic, final electron acceptors
- -incomplete or lack of a complete electron transport system
- -missing genes for enzymes within the Kreb's cycle
Thus, they utilize other means for the generation of energy in the form of ATP and to replenish NAD+ an oxidized form of NADH, the main electron carrier in glycolysis. Pyruvate is produced in the cytoplasm via glycolysis- it is also used as an electron acceptor in a process called fermentation.
Further Explanation:
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
Answer:
b. A transferase deficiency will result in an accumulation of the toxic metabolite galactosse 1-phosphate.
c. A galactokinase deficiency will cause an accumulation of galactose.
Explanation:
Transferase is an enzyme which is responsible for the breakdown of galactose which is a known milk sugar. Its deficiency causes the formation of toxic materials such as galactose-1-phosphate which comes from galactose, and galactitol. Galactokinase is also an enzyme which helps in the conversion of galactose into galactose 1-phosphate with the expenditure of ATP molecule, so its deficiency causes the deposition of galactose.
Answer:
He is born he eats some he gains weight he realizes he may have an eating disorder he becomes depressed he becomes very obese and overweight he has very high cholesterol and type 2 diabetes he finally is struck with a major heart attack that kills him in front of his loyal wife of 40 years.
Explanation:
Don’t click on that link it’s fake... this is the answer