Answer:

Explanation:
Step 1. Identify the Group that contains X
We look at the consecutive ionization energies and hunt for a big jump between them

We see a big jump between n = 2 and n = 3. This indicates that X has two valence electrons.
We can easily remove two electrons, but the third electron requires much more energy. That electron must be in the stable, filled, inner core.
So, X is in Group 2 and P is in Group 15.
Step 2. Identify the Compound
X can lose two valence electrons to reach a stable octet, and P can do the same by gaining three electrons.
We must have 3 X atoms for every 2 P atoms.
The formula of the compound is
.
Answer:
PCl3
Explanation:
The molecular formular of a compound shows the exact number of atoms of elements present in the compound. In this illustration, there is one atom of P and 3 atoms of Cl.
The formular is given as; PCl3
Answer:
k = -0.09165 years^(-1)
Explanation:
The exponential decay model of a radioactive isotope is generally given as;
A(t) = A_o(e^(kt))
Where;
A_o is quantity of isotope before decay, k is decay constant and A(t) is quantity after t years
We are given;
A_o = 5 kg
A(10) = 2kg
t = 10 years
Thus;
A(10) = 2 = 5(e^(10k))
Thus;
2 = 5(e^(10k))
2/5 = (e^(10k))
0.4 = (e^(10k))
In 0.4 = 10k
-0.9164 = 10k
k = -0.9164/10
k = -0.09165 years^(-1)
I believe so! If not tell me So I can delete this
Answer:
D
Explanation:
the H2O2 under go reduction to remove O2 and then forms water