Answer:
(x + 1) (3 x^2 + 1)
Step-by-step explanation:
Factor the following:
3 x^3 + 3 x^2 + x + 1
Factor terms by grouping. 3 x^3 + 3 x^2 + x + 1 = (3 x^3 + 3 x^2) + (x + 1) = 3 x^2 (x + 1) + (x + 1):
3 x^2 (x + 1) + (x + 1)
Factor x + 1 from 3 x^2 (x + 1) + (x + 1):
Answer: (x + 1) (3 x^2 + 1)
Answer:
(8, 0)
(-2, 0)
(-3, 0)
Step-by-step explanation:
x - 8 = 0
x = 8
x + 2 = 0
x = -2
x + 3 = 0
x = -3
First you plug in for x,
2(y-3)+y=12
Then you solve for y
2y-5+y=12
-10y+y=12
-9y=12
-9y/9=12/-9
y=-1.333333333333333333333333333333333333333333333333333333333
I believe that the answer is 22x
So even postive integers are by defention in form 2k where k is a natural number so
let the sum of even integers to n=S
S=2(1+2+3+4+5+6+7+8+......+k-1+k
divide bith sides of equation 1 by 2
0.5S=1+2+3+4+5+...........+k-1+k
S=2(k+(k-1)+..............................+2+1)
divide both sides of equation 2 by 2
0.5S=k+k-1+..............................+2+1)
by adding both we will get
___________________________
S=(k+1)(k)
so the sum will be equal to
S=

so let us test the equation
for the first 3 even number there sums will be
2+4+6=12
by our equation 3^2+3=12
gave us the same answer so our equation is correct