Answer:
8/15
please like my answer and brainliest me HSHSSHSHS
9514 1404 393
Answer:
√35 +3√7 -6 . . . square units
Step-by-step explanation:
The area can be figured a number of ways. The figure can be divided into parts, and the areas of those parts added.
Or, the area of the enclosing rectangle can be found, and the rectangle at upper right that is not shaded can be subtracted from that. We choose the latter.
The overall width is the sum of the given partial widths:
width = (√7 -2) + (2) = √7
Then the area of the bounding rectangle is ...
A = LW = (√5 +3)(√7) = √35 +3√7
The area of the upper right empty-space is ...
A = LW = (3)(2) = 6
Then The area of the shaded figure is ...
√35 +3√7 -6
Three numbers between 3.65 and 3.66 could be:
1) 3.651
2) 3.655
3) 3.657
4) 3.659
Hope this helps! :)
There is no restriction on the domain because there is a cube root for all real values positive or negative. So you can solve this as there are no extraneous solutions...
Cube both sides...
2x-4=-8
2x=-4
x=-2
Answer:
we can conclude that more than 50% of community college students plan to vote in the next presidential election
Step-by-step explanation:
Decision Rule
If;
P-value > significance level --- accept Null hypothesis
P-value < significance level --- reject Null hypothesis
Z score > Z(at 95% confidence interval) ---- reject Null hypothesis
Z score < Z(at 95% confidence interval) ------ accept Null hypothesis
Null hypothesis H0: 50% of community college students plan to vote in the next presidential election
H0: p = 0.50
Ha: More than 50% of community college students plan to vote in the next presidential election
Ha: p > 0.50
P-value = 0.02
From the decision rule;
Since the p-value for this study is less than the significance level.
0.02 < 0.05
So, we reject the null hypothesis, there is enough evidence to reject the null hypothesis. We thereby accept the alternative hypothesis.
Therefore, we can conclude that more than 50% of community college students plan to vote in the next presidential election