Answer:
2
Step-by-step explanation:
625282629283637hshshs
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
Center of rhombus bisects 90°.
Sum of angles in triangle = 180°
x + x + 14 + 90 = 180
2x + 104 = 180
2 (x + 52) = 180
x = (180 ÷ 2) - 52
x = 90 - 52
x = 38°
Answer:
1) 
2) 
3) 
And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
4) 
And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Step-by-step explanation:
For this case we have the following distributions given:
Probability M J
0.3 14% 22%
0.4 10% 4%
0.3 19% 12%
Part 1
The expected value is given by this formula:

And replacing we got:

Part 2

Part 3
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (M)= E(M^2) -[E(M)]^2 = 207.1 -(13.9^2)= 13.89](https://tex.z-dn.net/?f=Var%20%28M%29%3D%20E%28M%5E2%29%20-%5BE%28M%29%5D%5E2%20%3D%20207.1%20-%2813.9%5E2%29%3D%2013.89)
And the deviation would be:
Part 4
We can calculate the second moment first with the following formula:

And the variance would be given by:
![Var (J)= E(J^2) -[E(J)]^2 = 194.8 -(11.8^2)= 55.56](https://tex.z-dn.net/?f=Var%20%28J%29%3D%20E%28J%5E2%29%20-%5BE%28J%29%5D%5E2%20%3D%20194.8%20-%2811.8%5E2%29%3D%2055.56)
And the deviation would be:
Answer: 150 feet : 100 feet
Step-by-step explanation:
From the question, we are informed that the scale used by Eric was 1inch=5feet.
If the gym is 30 inches by 20 inches in the drawing, the acual length and width of the gym would be:
Length = 30 inches = 30 × 5 feet = 150 feet
Width = 20 inches = 20 × 5 feet = 100 feet
Therefore, the acual length and width of the gym would be 150 feet by 100 feet