You’ve got to work out 3/4 of the year first, that’s 75%, after you need to work out how many weeks are in those days so you divide it by 7 then divide that answer by $50 and hopefully you get your answer. hope this helps
Answer:
Matrix multiplication is not conmutative
Step-by-step explanation:
The matrix multiplication can be performed if the number of columns of the first matrix is equal to the number of rows of the second matrix
Let A with dimension mxn and B with dimension nxp represent two matrix
The multiplication of A by B is a matrix C with dimension mxp, but the multiplication of B by A is can't be calculated because the number of columns of B is not the number of rows of A. Therefore, you can notice that is not conmutative in general.
But even if the multiplication of AB and BA is defined (For example if A and B are squared matrix of 2x2) the multiplication is not necessary conmutative.
The matrix multiplication result is a matrix which entries are given by dot product of the corresponding row of the first matrix and the corresponding column of the second matrix:
![A=\left[\begin{array}{ccc}a11&a12\\a21&a22\end{array}\right]\\B= \left[\begin{array}{ccc}b11&b12\\b21&b22\end{array}\right]\\AB = \left[\begin{array}{ccc}a11b11+a12b21&a11b12+a12b22\\a21b11+a22b21&a21b12+a22b22\end{array}\right]\\\\BA=\left[\begin{array}{ccc}b11a11+b12a21&b11a12+b12a22\\b21a11+b22ba21&b21a12+b22a22\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11%26a12%5C%5Ca21%26a22%5Cend%7Barray%7D%5Cright%5D%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11%26b12%5C%5Cb21%26b22%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da11b11%2Ba12b21%26a11b12%2Ba12b22%5C%5Ca21b11%2Ba22b21%26a21b12%2Ba22b22%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CBA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db11a11%2Bb12a21%26b11a12%2Bb12a22%5C%5Cb21a11%2Bb22ba21%26b21a12%2Bb22a22%5Cend%7Barray%7D%5Cright%5D)
Notice that in general, the result is not the same. It could be the same for very specific values of the elements of each matrix.
Answer:
B) The maximum y-value of f(x) approaches 2
C) g(x) has the largest possible y-value
Step-by-step explanation:
f(x)=-5^x+2
f(x) is an exponential function.
Lim x→∞ f(x) = Lim x→∞ (-5^x+2) = -5^(∞)+2 = -∞+2→ Lim x→∞ f(x) = -∞
Lim x→ -∞ f(x) = Lim x→ -∞ (-5^x+2) = -5^(-∞)+2 = -1/5^∞+2 = -1/∞+2 = 0+2→
Lim x→ -∞ f(x) = 2
Then the maximun y-value of f(x) approaches 2
g(x)=-5x^2+2
g(x) is a quadratic function. The graph is a parabola
g(x)=ax^2+bx+c
a=-5<0, the parabola opens downward and has a maximum value at
x=-b/(2a)
b=0
c=2
x=-0/2(-5)
x=0/10
x=0
The maximum value is at x=0:
g(0)=-5(0)^2+2=-5(0)+2=0+2→g(0)=2
The maximum value of g(x) is 2
Answer:
The correct option are;
On a coordinate plane, a cubic function has an x-intercept of (0, 0)
On a coordinate plane, an oval is in quadrant 1
Step-by-step explanation:
Rotational symmetry of a shape is a shape that when it is rotated on its axis to a given angle less than one complete revolution, the shape looks exactly like the pre-image or original appearance of the shape
For a cubic function that has x-intercept = (0, 0) we have;
y = f(x) = a·x³ + b·x² + c·x
Has the shape f a fan blade and therefore, looks the sane when rotated when rotated through 180°
The shape of an oval looks the same when rotated through 180°
Answer:
3000 text messages can be sent without breaking the budget.
Step-by-step explanation:
Since each month your cell phone company charges $ 50 for your plan plus 3 cents for each text you send, and you have $ 140 budgeted for cell phone expenses for the month, to make a determination about the number of texts you can send each month the following calculation must be performed:
(140 - 50) / 0.03 = X
90 / 0.03 = X
3000 = X
Therefore, 3000 text messages can be sent without breaking the budget.