Your answer is 5, because the majority is 5 years old
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1
Answer:
12 servings!
Step-by-step explanation:
1/4 equals 0.25 gallons, 1/2 gallons is 0.5, so Will will have a mix of 0.75 gallons. If each serving is 1/16 and 1/16 equals 0.0625, divide 0.75 by 0.0625 = 12 servings.
D≈6.37
<span>CCircumference 20</span>
Answer:
(4, -2) (see attached)
Step-by-step explanation:
Vector addition on a graph is accomplished by placing the tail of one vector on the nose of the one it is being added to. The negative of a vector is in the direction opposite to the original.
__
<h3>vector components</h3>
The components of the vectors are ...
u = (1, -2)
v = (-6, -6)
Then the components of the vector sum are ...
2u -1/3v = 2(1, -2) -1/3(-6, -6) = (2 +6/3, -4 +6/3)
2u -1/3v = (4, -2)
<h3>graphically</h3>
The sum is shown graphically in the attachment. Vector u is added to itself by putting a copy at the end of the original. Then the nose of the second vector is at 2u.
One-third of vector v is subtracted by adding a vector to 2u that is 1/3 the length of v, and in the opposite direction. The nose of this added vector is the resultant: 2u-1/3v.
The resultant is in red in the attachment.