Answer:
Step-by-step explanation:
4x − y = −11
2x + 3y = 5
lets multiply the second equation by -2 and add it to the first:
4x − y = −11
-4x - 6y = -10
------------------
0 - 7y = -21
y = -21/-7
y = 3
now we substitute this result in the first equation to find x:
4x − y = −11
4x - 3 = -11
4x = -8
x = -8/4
x = 2
so the solution is y = 3 and x =2
4x − 9y = −21
−10y = −30
we solve for y
−10y = −30
y = -30/-10
y = 3
and substitute in the first equation:
4x − 9y = −21
4x − 9(3) = −21
4x - 27 = -21
4x = 6
x = 6/4 = 3/2
so the solution is x = 3/2 and y = 3
4x + 3y = 5
2y = −6
we solve for y:
2y = −6
y = -6/2
y = -3
we do substitute in the first equation:
4x + 3y = 5
4x + 3(-3) = 5
4x - 9 = 5
4x = 14
x = 14/4
x = 7/2
so the solution is x = 7/2 and y = -3
7x − 3y = −11
9x = −6
we solve for x:
9x = −6
x = -6/9
x = -2/3
then we substitute in the first equation the result found:
7x − 3y = −11
7(-2/3) − 3y = −11
-14/3 - 3y = -11
we multiply by 3 to eliminate fractions:
-14 - 9y = -33
9y = 19
y = 19/9
so the solution is x = -2/3 and y = 19/9
12x − 3y = −33
14x = −28
we solve for x:
14x = −28
x = -28/14
x = -2
then we substitute in the first equation:
12x − 3y = −33
12(-2) − 3y = −33
-24 - 3y = -33
3y = 9
y = 3
then the solution is x = -2 and y = 3
I think B i am not 100 sure
Any number that you can completely write down on paper using digits ... and a fraction bar or decimal point if necessary ... is a rational number. If you add it to 0.5, then the sum is another rational number.
Answer:
That is correct.
Step-by-step explanation:
2 times 10=20
4 times 1=4
5 times 0.1=0.5
8 times 0.01=0.08
20+4+0.5+0.08=24.58
That is correct.
Answer:
- 5(x +1.5)^2
- 10(x +1)^2
- 1/4(x +2)^2
- 3(x +5/6)^2
Step-by-step explanation:
When your desired form is expanded, it becomes ...
a(x +b)^2 = a(x^2 +2bx +b^2) = ax^2 +2abx +ab^2
This tells you the overall factor (a) is the leading coefficient of the given trinomial. Factoring that out, you can find b as the root of the remaining constant.
a) 5x^2 +15x +11.25 = 5(x^2 +3x +2.25) = 5(x +1.5)^2
b) 10x^2 +20x +10 = 10(x^2 +2x +1) = 10(x +1)^2
c) 1/4x^2 +x +1 = 1/4(x^2 +4x +4) = 1/4(x +2)^2
d) 3x^2 +5x +25/12 = 3(x^2 +5/3x +25/36) = 3(x +5/6)^2
_____
<em>Additional comment</em>
If you know beforehand that the expressions can be factored this way, finding the two constants (a, b) is an almost trivial exercise. It gets trickier when you're trying to write a general expression in vertex form (this form with an added constant). For that, you must develop the value of b from the coefficient of the linear term inside parentheses.