1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Licemer1 [7]
4 years ago
14

Use the graph to state the solution for the system.

Mathematics
1 answer:
FrozenT [24]4 years ago
3 0
We watch where the two lines intersect.

And that is at  x = 3, and y = 0.

So it is (3, 0).  Option C.
You might be interested in
What is the best estimate for the percent equivalent of 7/15
Sloan [31]
It is 46.6666667% 7/15=0.466666667 put into a percent it's 46.6666667%
6 0
3 years ago
Read 2 more answers
Which function does not have a vertical asymptote? A) y=(x) /(1-x²) . B) y=(5x) /(1-2x²) . C) y=(5x-1) /(3+x^2) . D) (5x) /(x+x²
uysha [10]

A function has a vertical asymptote x=a at point a, where the denominator becomes equal to 0.

A. The denominator of the function f(x)=\dfrac{x}{1-x^2} turns into 0 at x=1 or x=-1. Then x=1 and x=-1 are two vertical asymptotes of this function.

B. The denominator of the function f(x)=\dfrac{5x}{1-2x^2} turns into 0 at x=\sqrt{\frac{1}{2}} or x=-\sqrt{\frac{1}{2}}  Then x=\sqrt{\frac{1}{2}}  and x=-\sqrt{\frac{1}{2}}  are two vertical asymptotes of this function.

C. The denominator of the function f(x)=\dfrac{5x-1}{3+x^2} never turns into 0, then this function hasn't any asymptotes.

D. The denominator of the function f(x)=\dfrac{x}{x+x^2} turns into 0 at x=0. Then x=0 is vertical asymptote of this function.

Answer: correct choice is C.

5 0
3 years ago
If other factors are held constant, which combination of sample characteristics would produce the narrowest confidence interval
anzhelika [568]

Answer:

The correct option is C) large sample size (n) with small variance.

Step-by-step explanation:

Consider the provided information.

It is given that the other factors are held constant, and we want the narrowest confidence interval for a population mean.

Confidence interval for a population mean is directly proportional to variance and inversely proportional to the sample size.

If we increase the variance, CI will increase. But we want the narrowest CI, so variance should be small.

As CI is inversely proportional to sample size, therefore if we increase the sample size CI will decrease.

Hence, the correct option is C) large sample size (n) with small variance.

3 0
3 years ago
4.7x + 15.3x + 10.4 - 8.4
katrin2010 [14]

Answer:

10⋅(10x+1)

      5

​  

Hope this helps!

7 0
3 years ago
Lim n-> infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
Other questions:
  • A recipe calls for 2 tablespoons of seasoning for every 7 pieces of chicken. For the family picnic, Joel is making 84 pieces of
    15·2 answers
  • PLEASE HELP!!!!!
    11·1 answer
  • Identify GCF polynomial factor <br> 2x+6=
    14·1 answer
  • One florist made 16 bounquets in 5 hours . A second florist made 40 bouquets in 12 hours.which florist makes bouquets at a faste
    5·1 answer
  • Given f(x)=21x+14, find f(5)
    5·1 answer
  • Carlos owns an orchard. His apple trees produced 315 bushels of apples. Each bushel of apples weighs about 48 pounds. There are
    11·1 answer
  • 16)b)<br> I don’t know how to do
    11·2 answers
  • What is the slope of the line that passes through the points (1,7) and (3,1)
    13·2 answers
  • Find the least whole number N so that 2020 + N is exactly divisible by 11.
    7·1 answer
  • Shelia is making a cake. She
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!