Answer:
0.1225
Step-by-step explanation:
Given
Number of Machines = 20
Defective Machines = 7
Required
Probability that two selected (with replacement) are defective.
The first step is to define an event that a machine will be defective.
Let M represent the selected machine sis defective.
P(M) = 7/20
Provided that the two selected machines are replaced;
The probability is calculated as thus
P(Both) = P(First Defect) * P(Second Defect)
From tge question, we understand that each selection is replaced before another selection is made.
This means that the probability of first selection and the probability of second selection are independent.
And as such;
P(First Defect) = P (Second Defect) = P(M) = 7/20
So;
P(Both) = P(First Defect) * P(Second Defect)
PBoth) = 7/20 * 7/20
P(Both) = 49/400
P(Both) = 0.1225
Hence, the probability that both choices will be defective machines is 0.1225
Answer:
what is expected at 7am is 15 inches deep snow but what we have is 12 inches deep snow. The equation has failed in its prediction.
Step-by-step explanation:
In this question, we are asked to calculate if the prediction made by an equation modeled is correct.
Firstly let’s look at the equation in question;
y = 3t - 6
where y is the snow depth and t is the number of hours after midnight.
now we are looking at 7am, that’s 7 hours past 12am, meaning 7 hours after midnight.
let’s plug the value of t as 7 into the equation
y = 3(7) - 6
y = 21-6
y = 15 inches
according to the equation by Kevin, what is expected is 15 inches deep snow but what we have is 12 inches deep snow. The equation has failed in its prediction.
Here !!!!!!!!!!!!!!!!!!!!
Answer:
kqssshhskshks
Step-by-step explanation:
hxashbxjmbjzmjxbjsb
Answer:
True, True, False
Step-by-step explanation: